De novo germline mutation in the dual specificity phosphatase 10 gene accelerates autoimmune diabetes

2021 ◽  
Vol 118 (47) ◽  
pp. e2112032118
Author(s):  
Anne-Perrine Foray ◽  
Sophie Candon ◽  
Sara Hildebrand ◽  
Cindy Marquet ◽  
Fabrice Valette ◽  
...  

Insulin-dependent or type 1 diabetes (T1D) is a polygenic autoimmune disease. In humans, more than 60 loci carrying common variants that confer disease susceptibility have been identified by genome-wide association studies, with a low individual risk contribution for most variants excepting those of the major histocompatibility complex (MHC) region (40 to 50% of risk); hence the importance of missing heritability due in part to rare variants. Nonobese diabetic (NOD) mice recapitulate major features of the human disease including genetic aspects with a key role for the MHC haplotype and a series of Idd loci. Here we mapped in NOD mice rare variants arising from genetic drift and significantly impacting disease risk. To that aim we established by selective breeding two sublines of NOD mice from our inbred NOD/Nck colony exhibiting a significant difference in T1D incidence. Whole-genome sequencing of high (H)- and low (L)-incidence sublines (NOD/NckH and NOD/NckL) revealed a limited number of subline-specific variants. Treating age of diabetes onset as a quantitative trait in automated meiotic mapping (AMM), enhanced susceptibility in NOD/NckH mice was unambiguously attributed to a recessive missense mutation of Dusp10, which encodes a dual specificity phosphatase. The causative effect of the mutation was verified by targeting Dusp10 with CRISPR-Cas9 in NOD/NckL mice, a manipulation that significantly increased disease incidence. The Dusp10 mutation resulted in islet cell down-regulation of type I interferon signature genes, which may exert protective effects against autoimmune aggression. De novo mutations akin to rare human susceptibility variants can alter the T1D phenotype.

2021 ◽  
Author(s):  
Anne-Perrine Foray ◽  
Sophie Candon ◽  
Sara Hildebrand ◽  
Cindy Marquet ◽  
Fabrice Valette ◽  
...  

AbstractHere we report the isolation by selective breeding of two sublines of Non-Obese Diabetic (NOD) mice exhibiting a significant difference in the incidence of autoimmune type 1 diabetes (T1D). Whole genome sequencing of the NOD/NckH (high T1D incidence) and NOD/NckL (low T1D incidence) revealed the presence of a limited number of variants specific to each subline. Treating the age of T1D onset as a quantitative trait and using automated meiotic mapping (AMM), enhanced susceptibility in the NOD/NckH subline was unambiguously attributed to a recessive allele of Dusp10 which encodes a dual specificity phosphatase. The causative effect of the mutation was verified with a high level of confidence by targeting Dusp10 with CRISPR/Cas9 in NOD/NckL mice: in these animals a higher incidence of diabetes was observed. Expression of wild-type Dusp10 correlated with higher levels of surface PD-L1 in the islets of NOD/NckL mice.


2015 ◽  
Vol 112 (4) ◽  
pp. 1019-1024 ◽  
Author(s):  
Yi-Juan Hu ◽  
Yun Li ◽  
Paul L. Auer ◽  
Dan-Yu Lin

In the large cohorts that have been used for genome-wide association studies (GWAS), it is prohibitively expensive to sequence all cohort members. A cost-effective strategy is to sequence subjects with extreme values of quantitative traits or those with specific diseases. By imputing the sequencing data from the GWAS data for the cohort members who are not selected for sequencing, one can dramatically increase the number of subjects with information on rare variants. However, ignoring the uncertainties of imputed rare variants in downstream association analysis will inflate the type I error when sequenced subjects are not a random subset of the GWAS subjects. In this article, we provide a valid and efficient approach to combining observed and imputed data on rare variants. We consider commonly used gene-level association tests, all of which are constructed from the score statistic for assessing the effects of individual variants on the trait of interest. We show that the score statistic based on the observed genotypes for sequenced subjects and the imputed genotypes for nonsequenced subjects is unbiased. We derive a robust variance estimator that reflects the true variability of the score statistic regardless of the sampling scheme and imputation quality, such that the corresponding association tests always have correct type I error. We demonstrate through extensive simulation studies that the proposed tests are substantially more powerful than the use of accurately imputed variants only and the use of sequencing data alone. We provide an application to the Women’s Health Initiative. The relevant software is freely available.


2019 ◽  
Author(s):  
Jianjun Zhang ◽  
Baolin Wu ◽  
Qiuying Sha ◽  
Shuanglin Zhang ◽  
Xuexia Wang

AbstractBoth genome-wide association study and next generation sequencing data analyses are widely employed in order to identify disease susceptible common and/or rare genetic variants in many large scale genetic studies. Rare variants generally have large effects though they are hard to detect due to their low frequency. Currently, many existing statistical methods for rare variants association studies employ a weighted combination scheme, which usually puts subjective weights or suboptimal weights based on some ad hoc assumptions (e.g. ignoring dependence between rare variants). In this study, we analytically derive optimal weights for both common and rare variants and propose a General and novel approach to Test association between an Optimally Weighted combination of variants (G-TOW) in a gene or pathway for a continuous or dichotomous trait while easily adjusting for covariates. We conduct extensive simulation studies to evaluate the performance of G-TOW. Results of the simulation studies show that G-TOW has properly controlled type I error rates and it is the most powerful test among the methods we compared, when testing effects of either both rare and common variants or rare variants only. We also illustrate the effectiveness of G-TOW using the Genetic Analysis Workshop 17 (GAW17) data. In addition, we applied G-TOW and other competitive methods to test association for schizophrenia. The G-TOW have successfully verified genes FYN and VPS39 which are associated with schizophrenia reported in existing publications. Both of these genes are missed by the weighted sum statistic (WSS) and the sequence kernel association test (SKAT). G-TOW also showed much stronger significance (p-value=0.0037) than our previously developed method named Testing the effect of an Optimally Weighted combination of variants (TOW) (p-value=0.0143) on gene FYN. FYN is a member of the protein-tyrosine kinase oncogene family that phosphorylates glutamate metabotropic receptors and ionotropic N-methyl-d-aspartate (NMDA) receptors. NMDA modulates trafficking, subcellular distribution and function. It is involved in neuronal apoptosis, brain development and synaptic transmission and lower expression, which has been observed in the platelets of schizophrenic patients compared with controls. The application for schizophrenia indicates that G-TOW is a powerful tool in genome-wide association studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shan Jiang ◽  
Daizhan Zhou ◽  
Yin-Ying Wang ◽  
Peilin Jia ◽  
Chunling Wan ◽  
...  

AbstractSchizophrenia (SCZ) is a severe psychiatric disorder with a strong genetic component. High heritability of SCZ suggests a major role for transmitted genetic variants. Furthermore, SCZ is also associated with a marked reduction in fecundity, leading to the hypothesis that alleles with large effects on risk might often occur de novo. In this study, we conducted whole-genome sequencing for 23 families from two cohorts with unaffected siblings and parents. Two nonsense de novo mutations (DNMs) in GJC1 and HIST1H2AD were identified in SCZ patients. Ten genes (DPYSL2, NBPF1, SDK1, ZNF595, ZNF718, GCNT2, SNX9, AACS, KCNQ1, and MSI2) were found to carry more DNMs in SCZ patients than their unaffected siblings by burden test. Expression analyses indicated that these DNM implicated genes showed significantly higher expression in prefrontal cortex in prenatal stage. The DNM in the GJC1 gene is highly likely a loss function mutation (pLI = 0.94), leading to the dysregulation of ion channel in the glutamatergic excitatory neurons. Analysis of rare variants in independent exome sequencing dataset indicates that GJC1 has significantly more rare variants in SCZ patients than in unaffected controls. Data from genome-wide association studies suggested that common variants in the GJC1 gene may be associated with SCZ and SCZ-related traits. Genes co-expressed with GJC1 are involved in SCZ, SCZ-associated pathways, and drug targets. These evidences suggest that GJC1 may be a risk gene for SCZ and its function may be involved in prenatal and early neurodevelopment, a vulnerable period for developmental disorders such as SCZ.


2019 ◽  
Author(s):  
Shan Jiang ◽  
Daizhan Zhou ◽  
Yin-Ying Wang ◽  
Peilin Jia ◽  
Chunling Wan ◽  
...  

AbstractSchizophrenia (SCZ) is a severe psychiatric disorder with a strong genetic component. High heritability of SCZ suggests a major role for transmitted genetic variants. Furthermore, SCZ is also associated with a marked reduction in fecundity, leading to the hypothesis that alleles with large effects on risk might often occur de novo. In this study, we conducted whole-genome sequencing for 23 families from two cohorts with matched unaffected siblings and parents. Two nonsense de novo mutations (DNMs) in GJC1 and HIST1H2AD were identified in SCZ patients. Ten genes (DPYSL2, NBPF1, SDK1, ZNF595, ZNF718, GCNT2, SNX9, AACS, KCNQ1 and MSI2) were found to carry more DNMs in SCZ patients than their unaffected siblings by burden test. Expression analyses indicated that these DNM implicated genes showed significantly higher expression in prefrontal cortex in prenatal stage. The DNM in the GJC1 gene is highly likely a loss function mutation (pLI = 0.94), leading to the dysregulation of ion channel in the glutamatergic excitatory neurons. Analysis of rare variants in independent exome sequencing dataset indicates that GJC1 has significantly more rare variants in SCZ patients than in unaffected controls. Data from genome-wide association studies suggested that common variants in the GJC1 gene may be associated with SCZ and SCZ-related traits. Genes co-expressed with GJC1 are involved in SCZ, SCZ-associated pathways and drug targets. These evidence suggest that GJC1 may be a risk gene for SCZ and its function may be involved in prenatal and early neurodevelopment, a vulnerable period for developmental disorders such as SCZ.


2017 ◽  
Vol 23 (5) ◽  
pp. 1169-1180 ◽  
Author(s):  
L M Huckins ◽  
◽  
K Hatzikotoulas ◽  
L Southam ◽  
L M Thornton ◽  
...  

Abstract Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.


Author(s):  
Guanghao Qi ◽  
Nilanjan Chatterjee

Abstract Background Previous studies have often evaluated methods for Mendelian randomization (MR) analysis based on simulations that do not adequately reflect the data-generating mechanisms in genome-wide association studies (GWAS) and there are often discrepancies in the performance of MR methods in simulations and real data sets. Methods We use a simulation framework that generates data on full GWAS for two traits under a realistic model for effect-size distribution coherent with the heritability, co-heritability and polygenicity typically observed for complex traits. We further use recent data generated from GWAS of 38 biomarkers in the UK Biobank and performed down sampling to investigate trends in estimates of causal effects of these biomarkers on the risk of type 2 diabetes (T2D). Results Simulation studies show that weighted mode and MRMix are the only two methods that maintain the correct type I error rate in a diverse set of scenarios. Between the two methods, MRMix tends to be more powerful for larger GWAS whereas the opposite is true for smaller sample sizes. Among the other methods, random-effect IVW (inverse-variance weighted method), MR-Robust and MR-RAPS (robust adjust profile score) tend to perform best in maintaining a low mean-squared error when the InSIDE assumption is satisfied, but can produce large bias when InSIDE is violated. In real-data analysis, some biomarkers showed major heterogeneity in estimates of their causal effects on the risk of T2D across the different methods and estimates from many methods trended in one direction with increasing sample size with patterns similar to those observed in simulation studies. Conclusion The relative performance of different MR methods depends heavily on the sample sizes of the underlying GWAS, the proportion of valid instruments and the validity of the InSIDE assumption. Down-sampling analysis can be used in large GWAS for the possible detection of bias in the MR methods.


Nature ◽  
2021 ◽  
Vol 590 (7845) ◽  
pp. 290-299 ◽  
Author(s):  
Daniel Taliun ◽  
◽  
Daniel N. Harris ◽  
Michael D. Kessler ◽  
Jedidiah Carlson ◽  
...  

AbstractThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


2019 ◽  
Vol 104 (9) ◽  
pp. 3835-3850 ◽  
Author(s):  
Matthew Dapas ◽  
Ryan Sisk ◽  
Richard S Legro ◽  
Margrit Urbanek ◽  
Andrea Dunaif ◽  
...  

AbstractContextPolycystic ovary syndrome (PCOS) is among the most common endocrine disorders of premenopausal women, affecting 5% to15% of this population depending on the diagnostic criteria applied. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is highly heritable, but only a small proportion of this heritability can be accounted for by the common genetic susceptibility variants identified to date.ObjectiveThe objective of this study was to test whether rare genetic variants contribute to PCOS pathogenesis.Design, Patients, and MethodsWe performed whole-genome sequencing on DNA from 261 individuals from 62 families with one or more daughters with PCOS. We tested for associations of rare variants with PCOS and its concomitant hormonal traits using a quantitative trait meta-analysis.ResultsWe found rare variants in DENND1A (P = 5.31 × 10−5, adjusted P = 0.039) that were significantly associated with reproductive and metabolic traits in PCOS families.ConclusionsCommon variants in DENND1A have previously been associated with PCOS diagnosis in genome-wide association studies. Subsequent studies indicated that DENND1A is an important regulator of human ovarian androgen biosynthesis. Our findings provide additional evidence that DENND1A plays a central role in PCOS and suggest that rare noncoding variants contribute to disease pathogenesis.


2019 ◽  
Vol 29 (2) ◽  
pp. 589-602
Author(s):  
Chan Wang ◽  
Shufang Deng ◽  
Leiming Sun ◽  
Liming Li ◽  
Yue-Qing Hu

The genome-wide association studies aim at identifying common or rare variants associated with common diseases and explaining more heritability. It is well known that common diseases are influenced by multiple single nucleotide polymorphisms (SNPs) that are usually correlated in location or function. In order to powerfully detect association signals, it is highly desirable to take account of correlations or linkage disequilibrium (LD) information among multiple SNPs in testing for association. In this article, we propose a test SLIDE that depicts the difference of the average multi-locus genotypes between cases and controls and derive its variance–covariance matrix in the retrospective design. This matrix is composed of the pairwise LD between SNPs. Thus SLIDE can borrow the strength from an external database in the population of interest with a few thousands to hundreds of thousands individuals to improve the power for detecting association. Extensive simulations show that SLIDE has apparent superiority over the existing methods, especially in the situation involving both common and rare variants, both protective and deleterious variants. Furthermore, the efficiency of the proposed method is demonstrated in the application to the data from the Wellcome Trust Case Control Consortium.


Sign in / Sign up

Export Citation Format

Share Document