Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection

2021 ◽  
Vol 118 (45) ◽  
pp. e2112814118
Author(s):  
Carolyn Bomidi ◽  
Matthew Robertson ◽  
Cristian Coarfa ◽  
Mary K. Estes ◽  
Sarah E. Blutt

Intestinal epithelial damage is associated with most digestive diseases and results in detrimental effects on nutrient absorption and production of hormones and antimicrobial defense molecules. Thus, understanding epithelial repair and regeneration following damage is essential in developing therapeutics that assist in rapid healing and restoration of normal intestinal function. Here we used a well-characterized enteric virus (rotavirus) that damages the epithelium at the villus tip but does not directly damage the intestinal stem cell, to explore the regenerative transcriptional response of the intestinal epithelium at the single-cell level. We found that there are specific Lgr5+ cell subsets that exhibit increased cycling frequency associated with significant expansion of the epithelial crypt. This was accompanied by an increase in the number of immature enterocytes. Unexpectedly, we found rotavirus infects tuft cells. Transcriptional profiling indicates tuft cells respond to viral infection through interferon-related pathways. Together these data provide insights as to how the intestinal epithelium responds to insults by providing evidence of stimulation of a repair program driven by stem cells with involvement of tuft cells that results in the production of immature enterocytes that repair the damaged epithelium.

Author(s):  
Claudia Capdevila ◽  
Ruben I. Calderon ◽  
Erin C. Bush ◽  
Kismet Sheldon-Collins ◽  
Peter A. Sims ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 7921
Author(s):  
Akihiko Inaba ◽  
Ayane Arinaga ◽  
Keisuke Tanaka ◽  
Takaho Endo ◽  
Norihito Hayatsu ◽  
...  

In the intestine, the innate immune system excludes harmful substances and invading microorganisms. Tuft cells are taste-like chemosensory cells found in the intestinal epithelium involved in the activation of group 2 innate lymphoid cells (ILC2). Although tuft cells in other tissues secrete the neurotransmitter acetylcholine (ACh), their function in the gut remains poorly understood. In this study, we investigated changes in the expression of genes and cell differentiation of the intestinal epithelium by stimulation with interleukin-4 (IL-4) or IL-13 in macaque intestinal organoids. Transcriptome analysis showed that tuft cell marker genes were highly expressed in the IL-4- and IL-13-treated groups compared with the control, and the gene expression of choline acetyltransferase (ChAT), a synthesis enzyme of ACh, was upregulated in IL-4- and IL-13-treated groups. ACh accumulation was observed in IL-4-induced organoids using high-performance liquid chromatography-mass spectrometry (HPLC/MS), and ACh strongly released granules from Paneth cells. This study is the first to demonstrate ACh upregulation by IL-4 induction in primates, suggesting that IL-4 plays a role in Paneth cell granule secretion via paracrine stimulation.


2017 ◽  
Author(s):  
Adam D Gracz ◽  
Leigh Ann Samsa ◽  
Matthew J Fordham ◽  
Danny C Trotier ◽  
Bailey Zwarycz ◽  
...  

Background & AimsThe intestinal epithelium is maintained by intestinal stem cells (ISCs), which produce post-mitotic absorptive and secretory epithelial cells. Initial fate specification toward enteroendocrine, goblet, and Paneth cell lineages is dependent on Atoh1, a master regulator of secretory differentiation. However, the origin of tuft cells, which participate in Type II immune responses to parasitic infection, is less clear and appears to occur in an Atoh1-independent manner. Here we examine the role of Sox4 in ISC proliferation and differentiation.MethodsWe used mice with intestinal epithelial-specific conditional knockout of Sox4 (Sox4fl/fl:vilCre; Sox4cKO) to study the role of Sox4 in the small intestine. Crypt- and single cell-derived organoids were used to assay proliferation and ISC potency between control and Sox4cKO mice. Lineage allocation and genetic consequences of Sox4 ablation were studied by immunofluorescence, RT-qPCR, and RNA-seq. In vivo infection with helminths and in vitro cytokine treatment in primary intestinal organoids were used to assess tuft cell hyperplasia in control and Sox4cKO samples. Atoh1GFP reporter mice and single cell RNA-seq (scRNA-seq) were used to determine co-localization of SOX4 and Atoh1. Wild-type and inducible Atoh1 knockout (Atoh1fl/fl:vilCreER; Atoh1iKO) organoids carrying an inducible Sox4 overexpression vector (Sox4OE) were used to determine the role of Atoh1 in Sox4 driven secretory differentiation.ResultsLoss of Sox4 impairs ISC function and secretory differentiation, resulting in decreased numbers of enteroendocrine and tuft cells. In wild-type mice, SOX4+ cells are significantly upregulated following helminth infection coincident with tuft cell hyperplasia. Sox4 is activated by IL13 in vitro and Sox4cKO knockout mice demonstrate impaired tuft cell hyperplasia and parasite clearance following infection with helminths. A subset of Sox4-expressing cells colocalize with Atoh1 and enteroendocrine markers by scRNA-seq, while Sox4+/Atoh1-cells correlate strongly with tuft cell populations. Gain-of-function studies in primary organoids demonstrate that Sox4 is sufficient to drive both enteroendocrine and tuft cell differentiation, and can do so in the absence of Atoh1.ConclusionOur data demonstrate that Sox4 promotes enteroendocrine and tuft cell lineage allocation independently of Atoh1. These results challenge long-standing views of Atoh1 as the sole regulator of secretory differentiation in the intestine and are relevant for understanding host epithelial responses to parasitic infection.


Author(s):  
Min S. Kwon ◽  
Hee K. Chung ◽  
Lan Xiao ◽  
Ting-Xi Yu ◽  
Shelley R. Wang ◽  
...  

Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.


2021 ◽  
Vol 2 (3) ◽  
pp. 100673
Author(s):  
Shichen Liu ◽  
Maximilian Nguyen ◽  
Sahand Hormoz

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yibo Gan ◽  
Jian He ◽  
Jun Zhu ◽  
Zhengyang Xu ◽  
Zhong Wang ◽  
...  

AbstractA comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.


Stem Cells ◽  
2014 ◽  
Vol 32 (3) ◽  
pp. 822-827 ◽  
Author(s):  
Randal May ◽  
Dongfeng Qu ◽  
Nathaniel Weygant ◽  
Parthasarathy Chandrakesan ◽  
Naushad Ali ◽  
...  

2018 ◽  
Vol 3 ◽  
pp. 70 ◽  
Author(s):  
Nicolas M.B. Brancucci ◽  
Mariana De Niz ◽  
Timothy J. Straub ◽  
Deepali Ravel ◽  
Lauriane Sollelis ◽  
...  

Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.


Author(s):  
Sergio Triana ◽  
Megan L. Stanifer ◽  
Mohammed Shahraz ◽  
Markus Mukenhirn ◽  
Carmon Kee ◽  
...  

AbstractHuman intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a pipeline combining single-cell RNA-Seq and highly-multiplex RNA imaging and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages with a preferential infection of proliferating cells. Intriguingly, each intestinal epithelial cell lineage has a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our pipeline can be applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document