scholarly journals IgM RNA switch from membrane to secretory form is prevented by adding antireceptor antibody to bacterial lipopolysaccharide-stimulated murine primary B-cell cultures.

1985 ◽  
Vol 82 (21) ◽  
pp. 7384-7388 ◽  
Author(s):  
U. Chen-Bettecken ◽  
E. Wecker ◽  
A. Schimpl
2009 ◽  
Vol 70 ◽  
pp. S74
Author(s):  
Sebastiaan Heidt ◽  
Dave L. Roelen ◽  
Cees van Kooten ◽  
Chantal Eijsink ◽  
Frans Claas ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 375-375 ◽  
Author(s):  
Fatima Talab ◽  
Victoria Thompson ◽  
John C Allen ◽  
Ke Lin ◽  
Joseph R Slupsky

Abstract Abstract 375 B cell receptor (BCR) signaling promotes survival of the malignant clone in chronic lymphocytic leukaemia (CLL) through its ability to stimulate NFkB pathway signaling. In lymphoid cells, antigen receptor stimulation of this pathway is achieved by engaging the Carma-1 – Bcl10 – MALT1 (CBM) complex for eventual activation of I-kB kinases (IKKs). In B cells, protein kinase C beta (PKCbeta) is an important mediator of CBM complex activation. However, in CLL cells we found that PKCs do not appear to have a role in BCR-mediated NFkB pathway signaling, despite high expression levels of PKCbeta, because the presence of specific inhibitors of this kinase (LY379196 and bisindolylmaleimide-I) has no effect on the induction of IKK phosphorylation during BCR crosslinking. Examination of CBM complex expression suggests an explanation for this phenomenon; the expression levels of Carma-1 and MALT-1 are largely similar in CLL and normal B cells, but the expression of Bcl10 is much reduced in CLL cells. These findings, taken together with the established role of Bcl10 in the pathway of BCR-induced NFkB activation, suggest that CLL cells may employ a different mechanism to activate this pathway during BCR stimulation. Tyrosine kinases are known to play a role in BCR-induced IKK activation in CLL cells because compounds like dasatinib and PP2 inhibit NFkB pathway activation by BCR. One possible tyrosine kinase is c-Abl because we have shown this protein to be overexpressed in CLL cells, where it plays a role in activation of the NFkB pathway. To investigate the role of c-Abl in BCR-induced IKK activation, we used the inhibitor imatinib and found that the presence of this compound partially inhibited IKK phosphorylation in BCR-stimulated CLL cells. However, imatinib can also inhibit Lck, a T cell-specific src-family tyrosine kinase that is expressed by CLL cells. To differentiate between Lck- and c-Abl-mediated BCR signals we used the specific inhibitor 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[3,2d] pyrimidin-7-yl-cyclopentane (Lck-i). We found that the presence of this compound in CLL cell cultures undergoing BCR stimulation almost completely inhibited the induction of IKK activation. Investigation of Lck-i specificity revealed this compound did not inhibit either c-Abl or Lyn at the concentration used to inhibit Lck in CLL cell cultures. Further investigation of the effects of Lck-i showed that this compound was also effective in inhibiting BCR-induced activation of the Akt and ERK signaling pathways. Taken together, these data suggest a major role for Lck in BCR-mediated signaling in CLL cells, and question the existing paradigm on the importance of Lyn. Disclosures: No relevant conflicts of interest to declare.


1988 ◽  
Vol 168 (3) ◽  
pp. 853-862 ◽  
Author(s):  
D A Lebman ◽  
R L Coffman

Although it has been established that IL-4 enhances both IgG1 and IgE secretion in LPS-stimulated B cell cultures, these studies failed to determine whether IL-4 preferentially induces isotype switching or preferentially allows for the maturation of precommitted precursor cells. To distinguish between these possibilities, it is necessary to ascertain the effect of IL-4 on the isotypes secreted by individual precursor cells during clonal expansion. Therefore, clonal cultures of B cells stimulated with a Th2 helper cell line specific for rabbit Ig and rabbit anti-mouse IgM were established. The majority of B cells are capable of undergoing clonal expansion under these conditions. To vary the level of IL-4 present, either IL-4 or anti-IL-4 was added to cultures. In the presence of IL-4 there was an increase in the proportion of clones that secreted IgE and a decrease in the proportion of clones that secreted IgM. The addition of IL-4 to cultures also increased the amount of IgE secreted by individual clones. Thus, these experiments definitively prove that IL-4 causes specific heavy chain class switching to IgE in Th2-stimulated B cell cultures. In contrast, IL-4 does not affect the proportion of clones secreting IgG1, suggesting that other consequences of Th cell-B cell interactions play a role in the generation of an IgG1 response.


Immunology ◽  
1999 ◽  
Vol 97 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Takamatsu ◽  
Andersen ◽  
Denyer ◽  
Parkhouse
Keyword(s):  
B Cell ◽  

1982 ◽  
Vol 156 (4) ◽  
pp. 1115-1130 ◽  
Author(s):  
H Kiyono ◽  
J R McGhee ◽  
L M Mosteller ◽  
J H Eldridge ◽  
W J Koopman ◽  
...  

We successfully cloned antigen-specific T cells from murine gut-associated lymphoreticular tissue, i.e., Peyer's patches, which are dependent upon T cell growth factor and independent of antigen for continuous growth. These clones exhibit helper activity for IgA responses to sheep erythrocytes (SRBC) and have been designated T helper (Th) A. Two broad categories of Th A clones have been maintained in continuous culture. The first group supports IgM and largely IgA anti-SRBC plaque-forming cell (PFC) responses in both normal and SRBC-primed splenic B cell cultures, whereas the second group supports low IgM, IgG1, and IgG2 and high IgA PFC responses. Subclones derived from single cells maintain the parent helper properties when propagated in culture for long periods (greater than 7 mo). Cloned Th A cells are antigen specific and do not support polyclonal or immune responses to other thymus dependent antigens in normal B cell cultures. Th A cells require full histocompatibility for helper functions because addition of cloned Th A cells to B cell cultures from other H-2 types does not result in IgA responses. Cloned Th A cells are Thy-1.2+ and Lyt-1+ and Lyt-2-, Ig-, and I-A-. Th A cells bear Fc receptors for IgA and do not possess receptors for IgM or IgG isotypes. Thus, T cells that primarily promote IgA isotype responses have been isolated in high frequency from murine PP, an anatomical site of major importance for induction and regulation of the IgA response.


2007 ◽  
Vol 30 (6) ◽  
pp. 250 ◽  
Author(s):  
Jose Arellano Galindo ◽  
Maria Guadalupe Rodriquez Angeles ◽  
Norma Valazquez Guadarrama ◽  
Enrique Santos Esteban ◽  
Silvia Giono Cerezo

Purpose: To evaluate the hemolysin effect by ileal loop model produced by Vibrio cholerae O1 strains, compared with the cellular lysis or cytotoxic activity (CA) observed in cell culture. Method: We studied nine V. cholerae O1 strains, obtained during the Mexican outbreak of cholera (1990-1993), which had CA in Vero and CHO cells. Hemolysin was monitored with the hemolysis test. Titers of CA were calculated by CD50, and the association between CA and cholera toxin (CT) production was discarded by means of neutralization tests using an anti-CT polyclonal antibody. The CT production was measured with ELISA test. The LAL assay was performed in order to study relationships between the CA and bacterial lipopolysaccharide. Strains with CA were evaluated in rabbit and rat ileal loop models; hemorrhagic fluid was also measured. Tissues from ileal loop were included in paraffin to detect intestinal epithelial damage. Results: The hemolysin CA was not neutralized with the anti-CT polyclonal antibody. However, the associated factor of CA was heat labile. CA in cell cultures was not related to the bacterial lipopolysaccharide. The ileal loop test exhibited the presence of hemorrhagic tissue with inflammation. Conclusion: The V. cholerae O1 strains isolated were able to secrete hemolysin which, in turn, caused CA in cell cultures and produced the hemorrhagic and inflammatory effects observed in the ileal loop of rabbit and rat models.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3650-3650
Author(s):  
Zhigang Zhao ◽  
Lin Li ◽  
Meelad Dawlaty ◽  
Feng Pan ◽  
Zhe Li ◽  
...  

Abstract Objective: Tet1/2/3 are methylcytosine dioxygenases regulating cytosine methylation in the genome. Tet1 and Tet2 are abundantly expressed in HSC/HPCs and implicated in hematological malignancies. Tet2 -deletion in mice causes myeloid malignancies, while Tet1 -null mice are overtly normal early in life. Here, we investigated the overlapping and non-redundant functions of Tet1/Tet2 in HSC maintenance and hematological malignancies using Tet1/2 double knockout (DKO) mice. Methods: 1) Kinetic analysis of the hematologicalparameters on WT, Tet1-/-, Tet2-/- and DKO mice; 2) Analysis of HSC, myeloid and lymphoid progenitors and various maturation stages of B-cell populations; 3) Competitive bone marrow reconstitution assay; 4) RAN-Seq on LK cells and B220+ cells from young/undiseased and diseased DKO mice respectively; 5) Chemical labeling and affinity purification method coupled with high-throughput sequencing (hMe-Seal) to profile the genome-wide distribution of 5hmC, and methylated DNA immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq) to profile 5mC in BM LK cells from young WT, Tet2-/- and DKO mice; 6) q-PCR analysis of the mRNA expression levels of Tet1 and Tet2 on BM CD19+ cells from B-ALL patients and compared to that of CD19+ B-cells from healthy controls. Results: We found that T et 1 and T et 2 are often concomitantly down-regulatedin patients with B-ALL. Therefore, it is important to investigate the effects of combined loss of Tet1 and Tet2 on the hematopoietic phenotype and development of hematological malignancies in vivo. The LSK and CMP/GMP/MEP cell populations are comparable in yound WT, Tet1-/- and DKO mice, while were significantly increasedin Tet2-/- mice. When a replating assay was performed using LSK cells, Tet2-/- LSK cell cultures had a significant higher colony formation in each round of replating, while Tet1-/- and DKO LSK cell cultures only exhibited a moderate increase in the number of colonies at P2, but not P3 and P4. Furthermore, young DKO mice had an increased percentage of CLP, BLP and Pro-/Pre-/Immature-B cell populations in their BM as compared to WT, Tet1-/- and Tet2-/- mice. Consistent to the B-lineage phenotypic analysis, DKO BM cells contained higher pre-B cell colony forming cells than the three genotypes of control mice. Interestingly, DKO mice exhibited a strikingly decreased incidence and delayed onset of myeloid malignancies compared to Tet2-/- mice and in contrast developed lethal B-cell malignancies, most closely resembling B-ALL. The loss of Tet2 or DKO leads to genome-wide alterations of both 5mC and 5hmC. Significant overlaps between the differential hydroxymethylated regions (DhMRs) or differential methylated regions (DMRs) of two genotypes of LK cells were observed. However, intriguingly, the overlaps between DhMRs and DMRs within each genotype of LK cells were minimal, indicating that DhMRs and DMRs might represent distinct loci with altered epigenetic modifications under these conditions. When the expression of a pool of 654 genes that are known to be involved in regulating hematopoietic cell development and/or promoting leukemogenesis were overlap with DhMRs and DMRs identified above, we observed significant numbers of these genes with altered either 5hmC or 5mC modifications which however did not alter their gene expression. Furthermore, RNA-Seq on B-ALL DKO B220+ cells showed alteration of a set of genes involved in B-cell development and B-cell lymphoma/leukemogenesis. Conclusion: Using Tet1/2 double knockout mice, we found that Tet1 is required for Tet2 -deletion mediated HSC dysregulation, myeloid skewing and myeloid malignancy, indicating distinct roles of the two enzymes. Tet1 loss modulates the Tet2 -deletion mediated disease phenotype, not only decreasing the incidence and delaying the onset of myeloid malignancies, but also promoting the pathogenesis of B-cell malignancies. Furthermore, our observations highlight the roles of distinct cytosine modifications, particularly 5hmC, could play in marking the specific genes and enabling cells to fate decision change upon stimulation signals. These findings provide a pathological framework for further elucidating the molecular mechanisms and critical cross talks between Tet1 and Tet2 in the pathogenesis of hematological malignancies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document