scholarly journals Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: Implications for AIDS pathology

1998 ◽  
Vol 95 (8) ◽  
pp. 4595-4600 ◽  
Author(s):  
S. C. Piller ◽  
P. Jans ◽  
P. W. Gage ◽  
D. A. Jans
Neurosurgery ◽  
1997 ◽  
Vol 41 (3) ◽  
pp. 733-734
Author(s):  
Mark Johnson ◽  
Susan London ◽  
Hong Xiang ◽  
Yoshito Kinoshita ◽  
Marc Mayberg ◽  
...  

2001 ◽  
Vol 21 (4) ◽  
pp. 334-343 ◽  
Author(s):  
Carsten Culmsee ◽  
Yuan Zhu ◽  
Josef Krieglstein ◽  
Mark P. Mattson

After a stroke many neurons in the ischemic brain tissue die by a process called apoptosis, a form of cell death that may be preventable. The specific molecular cascades that mediate ischemic neuronal death are not well understood. The authors recently identified prostate apoptosis response-4 (Par-4) as a protein that participates in the death of cultured hippocampal neurons induced by trophic factor withdrawal and exposure to glutamate. Here, the authors show that Par-4 levels increase in vulnerable populations of hippocampal and striatal neurons in rats after transient forebrain ischemia; Par-4 levels increased within 6 hours of reperfusion and remained elevated in neurons undergoing apoptosis 3 days later. After transient focal ischemia in mice, Par-4 levels were increased 6 to12 hours after reperfusion in the infarcted cortex and the striatum, and activation of caspase-8 occurred with a similar time course. Par-4 immunoreactivity was localized predominantly in cortical neurons at the border of the infarct area. A Par-4 antisense oligonucleotide protected cultured hippocampal neurons against apoptosis induced by chemical hypoxia and significantly reduced focal ischemic damage in mice. The current data suggest that early up-regulation of Par-4 plays a pivotal role in ischemic neuronal death in animal models of stroke and cardiac arrest.


1998 ◽  
Vol 80 (5) ◽  
pp. 2688-2698 ◽  
Author(s):  
John R. McLeod ◽  
Maoxing Shen ◽  
Daniel J. Kim ◽  
Stanley A. Thayer

McLeod, John R., Jr., Maoxing Shen, Daniel J. Kim, and Stanley A. Thayer. Neurotoxicity mediated by aberrant patterns of synaptic activity between rat hippocampal neurons in culture. J. Neurophysiol. 80: 2688–2698, 1998. Reducing the extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM evoked an aberrant pattern of glutamatergic activity in the synaptic network formed by rat hippocampal neurons grown in primary culture. This treatment resulted in a significant increase in neuronal death when maintained for 20–24 h; 0.1 mM [Mg2+]o elicited a stable and repetitive series of intracellular Ca2+ concentration ([Ca2+]i) spikes as indicated by indo-1-based microfluorimetry. Fura-2-based digital imaging experiments found that the [Ca2+]i spikes were synchronized for all the neurons in a given field. Thus electrophysiological recordings from individual cells were reasonable representations of the field as a whole, enabling correlation of electrical activity to viability. Underlying each [Ca2+]i spike was an intense burst of action potentials. Whole cell voltage-clamp experiments showed that a burst was composed of fast action currents superimposed on a slow inward current. The N-methyl-d-aspartate (NMDA) receptor antagonist CGS19755 (10 μM) blocked [Ca2+]i spiking, the slow inward current, and the cell death induced by low [Mg2+]o. The L-type Ca2+ channel antagonist nimodipine (10 μM) blocked [Ca2+]i spiking, all synaptic activity, and the cell death induced by low [Mg2+]o. The non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) exerted variable effects on [Ca2+]i spiking and blocked the slow inward current only when the cells were held at a relatively negative holding potential. CNQX did not afford any protection from 0.1 mM [Mg2+]o-induced neurotoxicity. [Ca2+]i imaging experiments showed that CNQX inhibited [Ca2+]i spiking in a subset of neurons within an active network. Thus, the neurons that were insensitive to CNQX appear to be those that were destined to die. We characterized an in vitro model that allowed us to correlate specific electrophysiological components of glutamatergic synaptic activity to the subsequent viability of the network. A slow NMDA receptor-mediated inward current was required to elicit [Ca2+]i spiking and neurotoxicity. Non-NMDA receptors did not contribute to synaptically mediated cell death in this model. An L-type Ca2+ channel antagonist was neuroprotective when used at concentrations that blocked synaptic activity, suggesting that dendritic L-type Ca2+ channels present a useful target for neuroprotective drugs.


Neurosurgery ◽  
1997 ◽  
Vol 41 (3) ◽  
pp. 733-734
Author(s):  
Mark Johnson ◽  
Susan London ◽  
Hong Xiang ◽  
Yoshito Kinoshita ◽  
Marc Mayberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document