scholarly journals Exploring by Pulsed EPR the Electronic Structure of Ubisemiquinone Bound at the QH Site of Cytochrome bo3 from Escherichia coli with in Vivo13C-Labeled Methyl and Methoxy Substituents

2011 ◽  
Vol 286 (12) ◽  
pp. 10105-10114 ◽  
Author(s):  
Myat T. Lin ◽  
Alexander A. Shubin ◽  
Rimma I. Samoilova ◽  
Kuppala V. Narasimhulu ◽  
Amgalanbaatar Baldansuren ◽  
...  

The cytochrome bo3 ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O2 to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive. In this work, wild-type cytochrome bo3 as well as the D75E and D75H mutant proteins were prepared with ubiquinone-8 13C-labeled selectively at the methyl and two methoxy groups. This was accomplished by expressing the proteins in a methionine auxotroph in the presence of l-methionine with the side chain methyl group 13C-labeled. The 13C-labeled quinone isolated from cytochrome bo3 was also used for the generation of model anion radicals in alcohol. Two-dimensional pulsed EPR and ENDOR were used for the study of the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in the three proteins indicated above and in the model system. The data were used to characterize the transferred unpaired spin densities on the methyl and methoxy substituents and the conformations of the methoxy groups. In the wild type and D75E mutant, the constraints on the configurations of the methoxy side chains are similar, but the D75H mutant appears to have altered methoxy configurations, which could be related to the perturbed electron distribution in the semiquinone and the loss of enzymatic activity.

Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


1982 ◽  
Vol 152 (1) ◽  
pp. 534-537
Author(s):  
S Mitra ◽  
B C Pal ◽  
R S Foote

O(6)-Methylguanine-DNA methyltransferase is induced in Escherichia coli during growth in low levels of N-methyl-N'-nitro-N-nitrosoguanidine. We have developed a sensitive assay for quantitating low levels of this activity with a synthetic DNA substrate containing 3H-labeled O(6)-methylguanine as the only modified base. Although both wild-type and adaptation-deficient (ada) mutants of E. coli contained low but comparable numbers (from 13 to 60) of the enzyme molecules per cell, adaptation treatment caused a significant increase of the enzyme in the wild type but not in the ada mutants, suggesting that the ada mutation is in a regulatory locus and not in the structural gene for the methyltransferase.


1972 ◽  
Vol 18 (6) ◽  
pp. 909-915 ◽  
Author(s):  
A. P. Singh ◽  
K.-J. Cheng ◽  
J. W. Costerton ◽  
E. S. Idziak ◽  
J. M. Ingram

The site of the cell barrier to actinomycin-D uptake was studied using a wild-type Escherichia coli strain P and its cell envelope-defective filamentous mutants, strains 6γ and 12γ, both of which 'leak' β-galactosidase and alkaline phosphatase into the medium during growth indicating both membrane and cell-wall defects. Actinomycin-D entered the cells of these two mutant strains as evidenced by the inhibition of both 14C-uracil incorporation and synthesis of the induced β-galactosidase system. Under similar conditions, no inhibition occurred in the wild-type strain and its sucrose-lysozyme prepared spheroplasts. Actinomycin-D did, however, inhibit the above-mentioned systems in the wild-type sucrose-lysozyme spheroplasts prepared in the presence of 2 mM EDTA. The experimental data indicate that although the cell wall may act as a primary barrier or sieve to actinomycin-D, the cytoplasmic membrane should be considered the final and determinative barrier to this antibiotic.


1996 ◽  
Vol 317 (1) ◽  
pp. 267-272 ◽  
Author(s):  
Martin MEWIES ◽  
Leonard C. PACKMAN ◽  
F. Scott MATHEWS ◽  
Nigel S. SCRUTTON

In wild-type trimethylamine dehydrogenase, residue Arg-222 is positioned close to the isoalloxazine N1/C2 positions of the 6S-cysteinyl FMN. The positively charged guanidino group of Arg-222 is thought to stabilize negative charge as it develops at the N1 position of the flavin during flavinylation of the enzyme. Three mutant trimethylamine dehydrogenases were constructed to alter the nature of the charge at residue 222. The amount of active flavinylated enzyme produced in Escherichia coli is reduced when Arg-222 is replaced by lysine (mutant R222K). Removal or reversal of the charge at residue 222 (mutants R222V and R222E, respectively) leads to the production of inactive enzymes that are totally devoid of flavin. A comparison of the CD spectra for the wild-type and mutant enzymes revealed no major structural change following mutagenesis. Like the wild-type protein, each mutant enzyme contained stoichiometric amounts of the 4Fe-4S cluster and ADP. Electrospray MS also indicated that the native and recombinant wild-type enzymes were isolated as a mixture of deflavo and holo enzyme, but that each of the mutant enzymes have masses expected for deflavo trimethylamine dehydrogenase. The MS data indicate that the lack of assembly of the mutant proteins with FMN is not due to detectable levels of post-translational modification of significant mass. The experiments reported here indicate that simple mutagenic changes in the FMN-binding site can reduce the proportion of flavinylated enzyme isolated from Escherichia coli and that positive charge is required at residue 222 if flavinylation is to proceed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Diogo Tavares ◽  
Artur Reimer ◽  
Shantanu Roy ◽  
Aurélie Joublin ◽  
Vladimir Sentchilo ◽  
...  

AbstractBacterial periplasmic-binding proteins have been acclaimed as general biosensing platform, but their range of natural ligands is too limited for optimal development of chemical compound detection. Computational redesign of the ligand-binding pocket of periplasmic-binding proteins may yield variants with new properties, but, despite earlier claims, genuine changes of specificity to non-natural ligands have so far not been achieved. In order to better understand the reasons of such limited success, we revisited here the Escherichia coli RbsB ribose-binding protein, aiming to achieve perceptible transition from ribose to structurally related chemical ligands 1,3-cyclohexanediol and cyclohexanol. Combinations of mutations were computationally predicted for nine residues in the RbsB binding pocket, then synthesized and tested in an E. coli reporter chassis. Two million variants were screened in a microcolony-in-bead fluorescence-assisted sorting procedure, which yielded six mutants no longer responsive to ribose but with 1.2–1.5 times induction in presence of 1 mM 1,3-cyclohexanediol, one of which responded to cyclohexanol as well. Isothermal microcalorimetry confirmed 1,3-cyclohexanediol binding, although only two mutant proteins were sufficiently stable upon purification. Circular dichroism spectroscopy indicated discernable structural differences between these two mutant proteins and wild-type RbsB. This and further quantification of periplasmic-space abundance suggested most mutants to be prone to misfolding and/or with defects in translocation compared to wild-type. Our results thus affirm that computational design and library screening can yield RbsB mutants with recognition of non-natural but structurally similar ligands. The inherent arisal of protein instability or misfolding concomitant with designed altered ligand-binding pockets should be overcome by new experimental strategies or by improved future protein design algorithms.


2020 ◽  
Vol 8 (9) ◽  
pp. 1444
Author(s):  
Mitzi de la Cruz ◽  
Elisa A. Ramírez ◽  
Juan-Carlos Sigala ◽  
José Utrilla ◽  
Alvaro R. Lara

The design of optimal cell factories requires engineering resource allocation for maximizing product synthesis. A recently developed method to maximize the saving in cell resources released 0.5% of the proteome of Escherichia coli by deleting only three transcription factors. We assessed the capacity for plasmid DNA (pDNA) production in the proteome-reduced strain in a mineral medium, lysogeny, and terrific broths. In all three cases, the pDNA yield from biomass was between 33 and 53% higher in the proteome-reduced than in its wild type strain. When cultured in fed-batch mode in shake-flask, the proteome-reduced strain produced 74.8 mg L−1 pDNA, which was four times greater than its wild-type strain. Nevertheless, the pDNA supercoiled fraction was less than 60% in all cases. Deletion of recA increased the pDNA yields in the wild type, but not in the proteome-reduced strain. Furthermore, recA mutants produced a higher fraction of supercoiled pDNA, compared to their parents. These results show that the novel proteome reduction approach is a promising starting point for the design of improved pDNA production hosts.


Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Mei-Shiue Kuo ◽  
Kuei-Peng Chen ◽  
Whi Fin Wu

Escherichia coli ClpYQ protease and Lon protease possess a redundant function for degradation of SulA, a cell division inhibitor. An experimental cue implied that the capsule synthesis activator RcsA, a known substrate of Lon, is probably a specific substrate for the ClpYQ protease. This paper shows that overexpression of ClpQ and ClpY suppresses the mucoid phenotype of a lon mutant. Since the cpsB (wcaB) gene, involved in capsule synthesis, is activated by RcsA, the reporter construct cpsB–lacZ was used to assay for β-galactosidase activity and thus follow RcsA stability. The expression of cpsB–lacZ was increased in double mutants of lon in combination with clpQ or/and clpY mutation(s) compared with the wild-type or lon single mutants. Overproduction of ClpYQ or ClpQ decreased cpsB–lacZ expression. Additionally, a PBAD–rcsA fusion construct showed quantitatively that an inducible RcsA activates cpsB–lacZ expression. The effect of RcsA on cpsB–lacZ expression was shown to be influenced by the ClpYQ activities. Moreover, a rcsA Red –lacZ translational fusion construct showed higher activity of RcsARed–LacZ in a clpQ clpY strain than in the wild-type. By contrast, overproduction of cellular ClpYQ resulted in decreased β-galactosidase levels of RcsARed–LacZ. Taken together, the data indicate that ClpYQ acts as a secondary protease in degrading the Lon substrate RcsA.


2002 ◽  
Vol 184 (3) ◽  
pp. 695-705 ◽  
Author(s):  
Joseph C. Chen ◽  
Michael Minev ◽  
Jon Beckwith

ABSTRACT FtsQ, a 276-amino-acid, bitopic membrane protein, is one of the nine proteins known to be essential for cell division in gram-negative bacterium Escherichia coli. To define residues in FtsQ critical for function, we performed random mutagenesis on the ftsQ gene and identified four alleles (ftsQ2, ftsQ6, ftsQ15, and ftsQ65) that fail to complement the ftsQ1(Ts) mutation at the restrictive temperature. Two of the mutant proteins, FtsQ6 and FtsQ15, are functional at lower temperatures but are unable to localize to the division site unless wild-type FtsQ is depleted, suggesting that they compete poorly with the wild-type protein for septal targeting. The other two mutants, FtsQ2 and FtsQ65, are nonfunctional at all temperatures tested and have dominant-negative effects when expressed in an ftsQ1(Ts) strain at the permissive temperature. FtsQ2 and FtsQ65 localize to the division site in the presence or absence of endogenous FtsQ, but they cannot recruit downstream cell division proteins, such as FtsL, to the septum. These results suggest that FtsQ2 and FtsQ65 compete efficiently for septal targeting but fail to promote the further assembly of the cell division machinery. Thus, we have separated the localization ability of FtsQ from its other functions, including recruitment of downstream cell division proteins, and are beginning to define regions of the protein responsible for these distinct capabilities.


Biochemistry ◽  
2012 ◽  
Vol 51 (18) ◽  
pp. 3827-3838 ◽  
Author(s):  
Myat T. Lin ◽  
Amgalanbaatar Baldansuren ◽  
Richard Hart ◽  
Rimma I. Samoilova ◽  
Kuppala V. Narasimhulu ◽  
...  

2001 ◽  
Vol 29 (2) ◽  
pp. 99-105 ◽  
Author(s):  
G. Regelsberger ◽  
C. Jakopitsch ◽  
P. G. Furtmüller ◽  
F. Rueker ◽  
J. Switala ◽  
...  

Catalase-peroxidases are bifunctional peroxidases exhibiting an overwhelming catalase activity and a substantial peroxidase activity. Here we present a kinetic study of the formation and reduction of the key intermediate compound I by probing the role of the conserved tryptophan at the distal haem cavity site. Two wild-type proteins and three mutants of Synechocystis catalase-peroxidase (W122A and W122F) and Escherichia coli catalase-peroxidase (W105F) have been investigated by steady-state and stopped-flow spectroscopy. W122F and W122A completely lost their catalase activity whereas in W105F the catalase activity was reduced by a factor of about 5000. However, the mutations did not influence both formation of compound I and its reduction by peroxidase substrates. It was demonstrated unequivocally that the rate of compound I reduction by pyrogallol or o-dianisidine sometimes even exceeded that of the wild-type enzyme. This study demonstrates that the indole ring of distal Trp in catalase-peroxidases is essential for the two-electron reduction of compound I by hydrogen peroxide but not for compound I formation or for peroxidase reactivity (i.e. the one-electron reduction of compound I).


Sign in / Sign up

Export Citation Format

Share Document