scholarly journals Compromised Myocardial Energetics in Hypertrophied Mouse Hearts Diminish the Beneficial Effect of Overexpressing SERCA2a

2011 ◽  
Vol 286 (12) ◽  
pp. 10163-10168 ◽  
Author(s):  
Ilka Pinz ◽  
Rong Tian ◽  
Darrell Belke ◽  
Eric Swanson ◽  
Wolfgang Dillmann ◽  
...  

The sarcoplasmic reticulum calcium ATPase (SERCA) plays a central role in regulating intracellular Ca2+ homeostasis and myocardial contractility. Several studies show that improving Ca2+ handling in hypertrophied rodent hearts by increasing SERCA activity results in enhanced contractile function. This suggests that SERCA is a potential target for gene therapy in cardiac hypertrophy and failure. However, it raises the issue of increased energy cost resulting from a higher ATPase activity. In this study, we determined whether SERCA overexpression alters the energy cost of increasing myocardial contraction in mouse hearts with pressure-overload hypertrophy using 31P NMR spectroscopy. We isolated and perfused mouse hearts from wild-type (WT) and transgenic (TG) mice overexpressing the cardiac isoform of SERCA (SERCA2a) 8 weeks after ascending aortic constriction (left ventricular hypertrophy (LVH)) or sham operation. We found that overexpressing SERCA2a enhances myocardial contraction and relaxation in normal mouse hearts during inotropic stimulation with isoproterenol. Energy consumption was proportionate to the increase in contractile function. Thus, increasing SERCA2a expression in the normal heart allows an enhanced inotropic response with no compromise in energy supply and demand. However, this advantage was not sustained in LVH hearts in which the energetic status was compromised. Although the overexpression of SERCA2a prevented the down-regulation of SERCA protein in LVH hearts, TG-LVH hearts showed no increase in inotropic response when compared with WT-LVH hearts. Our results suggest that energy supply may be a limiting factor for the benefit of SERCA overexpression in hypertrophied hearts. Thus, strategies combining energetic support with increasing SERCA activity may improve the therapeutic effectiveness for heart failure.

2013 ◽  
Vol 304 (4) ◽  
pp. H529-H537 ◽  
Author(s):  
Michael Schwarzer ◽  
Andrea Schrepper ◽  
Paulo A. Amorim ◽  
Moritz Osterholt ◽  
Torsten Doenst

Years ago a debate arose as to whether two functionally different mitochondrial subpopulations, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), exist in heart muscle. Nowadays potential differences are often ignored. Presumably, SSM are providing ATP for basic cell function, whereas IFM provide energy for the contractile apparatus. We speculated that two distinguishable subpopulations exist that are differentially affected by pressure overload. Male Sprague-Dawley rats were subjected to transverse aortic constriction for 20 wk or sham operation. Contractile function was assessed by echocardiography. Heart tissue was analyzed by electron microscopy. Mitochondria were isolated by differential centrifugation, and respiratory capacity was analyzed using a Clark electrode. Pressure overload induced left ventricular hypertrophy with increased posterior wall diameter and impaired contractile function. Mitochondrial state 3 respiration in control was 50% higher in IFM than in SSM. Pressure overload significantly impaired respiratory rates in both IFM and SSM, but in SSM to a lower extent. As a result, there were no differences between SSM and IFM after 20 wk of pressure overload. Pressure overload reduced total citrate synthase activity, suggesting reduced total mitochondrial content. Electron microscopy revealed normal morphology of mitochondria but reduced total mitochondrial volume density. In conclusion, IFM show greater respiratory capacity in the healthy rat heart and a greater depression of respiratory capacity by pressure overload than SSM. The differences in respiratory capacity of cardiac IFM and SSM in healthy hearts are eliminated with pressure overload-induced heart failure. The strong effect of pressure overload on IFM together with the simultaneous appearance of mitochondrial and contractile dysfunction may support the notion of IFM primarily producing ATP for contractile function.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ludovic O Bénard ◽  
Daniel S Matasic ◽  
Mathilde Keck ◽  
Anne-Marie Lompré ◽  
Roger J Hajjar ◽  
...  

STromal Interaction Molecule 1 (STIM1), a membrane protein of the sarcoplasmic reticulum, has recently been proposed as a positive regulator of cardiomyocyte growth by promoting Ca2+ entry through the plasma membrane and the activation of Ca2+-mediated signaling pathways. We demonstrated that STIM1 silencing prevented the development of left ventricular hypertrophy (LVH) in rats after abdominal aortic banding. Our aim was to study the role of STIM1 during the transition from LVH to heart failure (HF). For experimental timeline, see figure. Transverse Aortic Constriction (TAC) was performed in C57Bl/6 mice. In vivo gene silencing was performed using recombinant Associated AdenoVirus 9 (AAV9). Mice were injected with saline or with AAV9 expressing shRNA control or against STIM1 (shSTIM1) (dose: 1e+11 viral genome), which decreased STIM1 cardiac expression by 70% compared to control. While cardiac parameters were similar between the TAC groups at weeks 3 and 6, shSTIM1 animals displayed a progressive and total reversion of LVH with LV walls thickness returning to values observed in sham mice at week 8. This reversion was associated with the development of significant LV dilation and severe contractile dysfunction, as assessed by echography. Hemodynamic analysis confirmed the altered contractile function and dilation of shSTIM1 animals. Immunohistochemistry showed a trend to more fibrosis. Despite hypertrophic stimuli, there was a significant reduction in cardiac myocytes cross-section area in shSTIM1-treated animals as compared to other TAC mice. This study showed that STIM1 is essential to maintain compensatory LVH and that its silencing accelerates the transition to HF.


2007 ◽  
Vol 293 (4) ◽  
pp. H2367-H2376 ◽  
Author(s):  
Jon Arne Kro Birkeland ◽  
Fredrik Swift ◽  
Nils Tovsrud ◽  
Ulla Enger ◽  
Per Kristian Lunde ◽  
...  

Rats with congestive heart failure (CHF) develop ventricular inotropic responsiveness to serotonin (5-HT), mediated through 5-HT2A and 5-HT4 receptors. Human ventricle is similarly responsive to 5-HT through 5-HT4 receptors. We studied isolated ventricular cardiomyocytes to clarify the effects of 5-HT on intracellular Ca2+ handling. Left-ventricular cardiomyocytes were isolated from male Wistar rats 6 wk after induction of postinfarction CHF. Contractile function and Ca2+ transients were measured in field-stimulated cardiomyocytes, and L-type Ca2+ current ( ICa,L) and sarcoplasmic reticulum (SR) Ca2+ content were measured in voltage-clamped cells. Protein phosphorylation was measured by Western blotting or phosphoprotein gel staining. 5-HT4- and 5-HT2A-receptor stimulation induced a positive inotropic response of 33 and 18% (both P < 0.05) and also increased the Ca2+ transient (44 and 6%, respectively; both P < 0.05). ICa,L and SR Ca2+ content increased only after 5-HT4-receptor stimulation (57 and 65%; both P < 0.05). Phospholamban serine16 (PLB-Ser16) and troponin I phosphorylation increased by 26 and 13% after 5-HT4-receptor stimulation ( P < 0.05). 5-HT2A-receptor stimulation increased the action potential duration and did not significantly change the phosphorylation of PLB-Ser16 or troponin I, but it increased myosin light chain 2 (MLC2) phosphorylation. In conclusion, the positive inotropic response to 5-HT4 stimulation results from increased ICa,L and increased phosphorylation of PLB-Ser16, which increases the SR Ca2+ content. 5-HT4 stimulation is thus, like β-adrenoceptor stimulation, possibly energetically unfavorable in CHF. 5-HT2A-receptor stimulation, previously studied in acute CHF, induces a positive inotropic response also in chronic CHF, probably mediated by MLC2 phosphorylation.


2004 ◽  
Vol 287 (4) ◽  
pp. H1857-H1867 ◽  
Author(s):  
Michael Weiss ◽  
Myoungki Baek ◽  
Wonku Kang

To gain more insight into the mechanistic processes controlling the kinetics of inotropic response of digoxin in the perfused whole heart, an integrated kinetic model was developed incorporating digoxin uptake, receptor binding (Na+-K+-ATPase inhibition), and cellular events linking receptor occupation and response. The model was applied to data obtained in the single-pass Langendorff-perfused rat heart for external [Ca2+] of 0.5 and 1.5 mM under control conditions and in the presence of the reverse-mode Na+/Ca2+ exchange inhibitor KB-R7943 (0.1 μM) in perfusate. Outflow concentration and left ventricular developed pressure data measured for three consecutive doses (15, 30, and 45 μg) in each heart were analyzed simultaneously. While disposition kinetics of digoxin was determined by interaction with a heterogeneous receptor population consisting of a high-affinity/low-capacity and a low-affinity/high- capacity binding site, response generation was >80% mediated by binding to the high-affinity receptor. Digoxin sensitivity increased at lower external [Ca2+] due to higher stimulus amplification. Coadministration of KB-R7943 significantly reduced the positive inotropic effect of digoxin at higher doses (30 and 45 μg) and led to a saturated and delayed receptor occupancy-response relationship in the cellular effectuation model. The results provide further evidence for the functional heterogeneity of the Na+-K+-ATPase and suggest that in the presence of KB-R7943 a reduction of the Ca2+ influx rate via the reverse mode Na+/Ca2+ exchanger might become the limiting factor in digoxin response generation.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Christina Westphal ◽  
Daniela Fliegner ◽  
Vera Regitz-Zagrosek

Objectives: Female pressure-overloaded hearts show less fibrosis compared with males. 17β-Estradiol (E2) attenuates cardiac fibrosis in female mice. Whether this is mediated by direct E2-effects on collagen synthesis is still unknown. Therefore, we investigated the role of E2 and estrogen receptors (ER) on collagen I and III expression and analyzed involved mechanisms. Methods: Female C57BL/6J mice (7 weeks) underwent sham operation, ovariectomy (OVX), OVX with E2-supplementation (390mg E2-containing pellets) or placebo. After 2 weeks, animals underwent transverse aortic constriction (TAC) or sham surgery. Mice were sacrificed after 9 weeks. Collagen amount, collagen I and III protein in left ventricular tissue were detected by Sirius Red and antibody staining, respectively. Gene and protein expression were determined by quantitative Real-Time PCR and Western blot. Adult female rat cardiac fibroblasts were treated with E2 (10 -8 M), vehicle, ERα- and β-agonists (10 -7 M) for 24h or pre-treated with PD98059 for 1h. ER binding to the collagen I and III promoter was analyzed by chromatin immunoprecipitation assays. Findings: In female OVX mice, undergoing TAC surgery, E2-supplementation significantly reduced collagen deposition, collagen I and III mRNA and protein levels in comparison with mice without E2. In female rat cardiac fibroblasts, E2 significantly down-regulated collagen I and III mRNA and protein level. Specific ER-agonist-treatment showed that E2-mediated regulation of collagen I and III expression was mediated via activation of ERα, but not ERβ. Further, upon E2-treatment, ERα was phosphorylated at Ser118, which occurred by E2-induced activation of ERK1/2 signaling. Furthermore, we could show that ERα and ERβ bind to two putative half-palindromic estrogen response elements within the collagen I and III promoter in female cardiac fibroblasts. Conclusion: E2 inhibits cardiac collagen I and III mRNA and protein in female mice under pressure overload. Data from rat female cardiac fibroblasts suggest that this is mediated via E2-activated ERK1/2 signaling and ERα, which binds with ERβ to the collagen I and III promoter. Understanding of how E2/ER attenuate collagen I and III expression in pathological hypertrophy may improve therapy.


1981 ◽  
Vol 240 (1) ◽  
pp. H80-H84
Author(s):  
B. A. Carabello ◽  
R. Mee ◽  
J. J. Collins ◽  
R. A. Kloner ◽  
D. Levin ◽  
...  

Whether hypertrophied cardiac muscle functions normally or abnormally is a point of controversy in the literature. Most animal studies showing depressed performance of hypertrophied cardiac muscle have used experimental methods in which hypertrophy was produced by acutely imposing a pressure overload on the left or right ventricle, which may cause myocardial injury. To assess the possibility that chronic, slowly developing hypertrophy is associated with normal myocardial function, we developed an experimental model in which increased afterload is imposed gradually on the left ventricle in the dog. A snug band was placed around the aorta beneath the left coronary artery in puppies without producing a stenosis. As the puppies grew, relative aortic stenosis developed as increased cardiac output flowed across that fixed outflow area. One group (group A) of six puppies was banded early, whereas a second group (group B, five puppies) was banded late and served as controls. Left ventricular weight (g) to body weight (kg) ratio remained normal in group B animals (3.9 +/- 0.14), whereas this ratio was increased to 5.3 +/- 0.24 (P < 0.001) in group A animals indicating development of moderate cardiac hypertrophy. Ejection fraction, dP/dt, Vcf, and stroke work per gram of myocardium were virtually identical in both groups. We conclude that moderate, gradually developing cardiac hypertrophy as produced by this model is associated with normal myocardial contractile performance.


2005 ◽  
Vol 288 (1) ◽  
pp. H317-H327 ◽  
Author(s):  
Masaharu Nakayama ◽  
Xinhua Yan ◽  
Robert L. Price ◽  
Thomas K. Borg ◽  
Kenta Ito ◽  
...  

ANG II type 2 receptor (AT2) is upregulated in failing hearts, but its effect on myocyte contractile function is not known. We measured fractional cell shortening and intracellular Ca2+ concentration transients in left ventricular myocytes derived from transgenic mice in which ventricle-specific expression of AT2 was driven by the myosin light chain 2v promoter. Confocal microscopy studies confirmed upregulation of AT2 in the ventricular myocytes and partial colocalization of AT2 with AT1. Three components of contractile performance were studied. First, baseline measurements (0.5 Hz, 1.5 mmol/l extracellular Ca2+ concentration, 25°C) and study of contractile reserve at faster pacing rates (1–5 Hz) revealed Ca2+-dependent contractile dysfunction in myocytes from AT2 transgenic mice. Comparison of two transgenic lines suggested a dose-dependent relationship between magnitude of contractile dysfunction and level of AT2 expression. Second, activity of the Na+/H+ exchanger, a dominant transporter that regulates beat-to-beat intracellular pH, was impaired in the transgenic myocytes. Third, the inotropic response to β-adrenergic versus ANG II stimulation differed. Both lines showed impaired contractile response to β-adrenergic stimulation. ANG II elicited an increase in contractility and intracellular Ca2+ in wild-type myocytes but caused a negative inotropic effect in myocytes from AT2 transgenic mice. In contrast with β-adrenergic response, the depressed response to ANG II was related to level of AT2 overexpression. The depressed response to ANG II was also present in myocytes from young transgenic mice before development of heart failure. Thus chronic overexpression of AT2 has the potential to cause Ca2+- and pH-dependent contractile dysfunction in ventricular myocytes, as well as loss of the inotropic response to ANG II.


2019 ◽  
Vol 22 (6) ◽  
pp. E432-E437
Author(s):  
Zhixiang Xie ◽  
Shuyin Wang ◽  
Zijing Liang ◽  
Liangbo Zeng ◽  
Rongde Lai ◽  
...  

Objective: The aim of this study was to observe the impacts of the specific cyclooxygenase-2 inhibitor celecoxib on cardiac structures, functions, and inflammatory factors during the process of pressure overload–induced myocardial hypertrophy. Methods: Twenty-four male Sprague Dawley rats were randomly divided into 3 groups: the sham operation group, the surgery group, and the celecoxib group. The model was established according to the abdominal aortic coarctation method. Results: At 16 weeks, rats in the celecoxib group were fed a celecoxib-mixed diet (10 mg/kg) for 8 consecutive weeks. At week 24 after model establishment, the cardiac structures and functions were observed; changes in the levels of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, prostaglandin E2 (PGE2), C-reactive protein (CRP), and uric acid (UA) were detected; and the contents of Smad1/2/3 proteins (Smad1, Smad2, and Smad3)  were determined. Left ventricular mass index, the heart weight/body weight ratio, and TNF-α, TGF-β, PGE2, CRP, and UA levels of the celecoxib group were all significantly decreased relative to those of the surgery group (P < .05); moreover, the cardiac functions were significantly improved compared to those of the surgery group (P < .05). Conclusions: These results show that inflammatory factors are involved in the myocardial hypertrophy process and that celecoxib may reverse myocardial hypertrophy through a variety of pathways.


2003 ◽  
Vol 95 (4) ◽  
pp. 1638-1647 ◽  
Author(s):  
J. David Symons ◽  
Yoko Hayashi ◽  
Jodi L. Ensunsa

We hypothesized that myocardial contractile function and coronary arterial function are greater after ischemia and reperfusion in high-intensity treadmill-trained vs. sedentary rats. Rats performed 10 × 4-min bouts of treadmill running consisting of 2 min at 13 m/min + 2 min at 45-60 m/min (Etr) or were sedentary (Sed) for 12 wk. Animals then were instrumented to measure left ventricular (LV) contractility in response to three 15-min coronary occlusion (O) and 5-min reperfusion (R) cycles (Isc) or a sham operation (Sham). After the Isc and Sham protocols, hearts were excised and coronary arterial (∼105 μm ID) function was evaluated by using isometric techniques. LV developed pressure, the first derivative of LV pressure at a developed pressure of 40 mmHg, and systolic blood pressure were not different between Etr ( n = 14) and Sed ( n = 7) rats before or after the Sham protocol. Furthermore, hemodynamic variables were similar in Etr ( n = 14) and Sed ( n = 13) animals before the Isc protocol and were depressed to the same degree by the three O-R cycles. Therefore, Etr did not alter myocardial contractile function in rats that were (i.e., Isc) or were not (i.e., Sham) exposed to ischemia and reperfusion. Acetylcholine-evoked relaxation (10-8 to 3 × 10-5 M) was greater ( P < 0.05) in coronary arteries from Sham-Etr vs. Sham-Sed animals (5 of 8 doses tested) and Isc-Etr vs. Isc-Sed rats (3 of 8 doses tested). Maximal relaxation produced by sodium nitroprusside (10-4 M) was similar among groups. Vasocontractile responses produced by KCl (10-100 mM) and endothelin-1 (10-11-10-4 M) were greater ( P < 0.05) in the presence vs. the absence of nitric oxide synthase inhibition (10-6 M NG-monomethyl-l-arginine) in vessels from Sham-Etr but not Sham-Sed rats and from Isc-Etr but not Isc-Sed rats. These findings suggest that Etr-evoked improvements in coronary function are maintained in small arteries even when exposed to ischemia and reperfusion.


Sign in / Sign up

Export Citation Format

Share Document