Abstract 89: 17beta-Estradiol-activated Estrogen Receptors Attenuate Cardiac Fibrosis Through Inhibition of Collagen I and III Expression in Female Hearts

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Christina Westphal ◽  
Daniela Fliegner ◽  
Vera Regitz-Zagrosek

Objectives: Female pressure-overloaded hearts show less fibrosis compared with males. 17β-Estradiol (E2) attenuates cardiac fibrosis in female mice. Whether this is mediated by direct E2-effects on collagen synthesis is still unknown. Therefore, we investigated the role of E2 and estrogen receptors (ER) on collagen I and III expression and analyzed involved mechanisms. Methods: Female C57BL/6J mice (7 weeks) underwent sham operation, ovariectomy (OVX), OVX with E2-supplementation (390mg E2-containing pellets) or placebo. After 2 weeks, animals underwent transverse aortic constriction (TAC) or sham surgery. Mice were sacrificed after 9 weeks. Collagen amount, collagen I and III protein in left ventricular tissue were detected by Sirius Red and antibody staining, respectively. Gene and protein expression were determined by quantitative Real-Time PCR and Western blot. Adult female rat cardiac fibroblasts were treated with E2 (10 -8 M), vehicle, ERα- and β-agonists (10 -7 M) for 24h or pre-treated with PD98059 for 1h. ER binding to the collagen I and III promoter was analyzed by chromatin immunoprecipitation assays. Findings: In female OVX mice, undergoing TAC surgery, E2-supplementation significantly reduced collagen deposition, collagen I and III mRNA and protein levels in comparison with mice without E2. In female rat cardiac fibroblasts, E2 significantly down-regulated collagen I and III mRNA and protein level. Specific ER-agonist-treatment showed that E2-mediated regulation of collagen I and III expression was mediated via activation of ERα, but not ERβ. Further, upon E2-treatment, ERα was phosphorylated at Ser118, which occurred by E2-induced activation of ERK1/2 signaling. Furthermore, we could show that ERα and ERβ bind to two putative half-palindromic estrogen response elements within the collagen I and III promoter in female cardiac fibroblasts. Conclusion: E2 inhibits cardiac collagen I and III mRNA and protein in female mice under pressure overload. Data from rat female cardiac fibroblasts suggest that this is mediated via E2-activated ERK1/2 signaling and ERα, which binds with ERβ to the collagen I and III promoter. Understanding of how E2/ER attenuate collagen I and III expression in pathological hypertrophy may improve therapy.

2018 ◽  
Vol 115 (2) ◽  
pp. 315-327 ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Cindy Schriever ◽  
Kana Kusumoto ◽  
Lisa Kramer ◽  
...  

Abstract Aims Sex differences in cardiac fibrosis point to the regulatory role of 17β-Estradiol (E2) in cardiac fibroblasts (CF). We, therefore, asked whether male and female CF in rodent and human models are differentially susceptible to E2, and whether this is related to sex-specific activation of estrogen receptor alpha (ERα) and beta (ERβ). Methods and results In female rat CF (rCF), 24 h E2-treatment (10−8  M) led to a significant down-regulation of collagen I and III expression, whereas both collagens were up-regulated in male rCF. E2-induced sex-specific collagen regulation was also detected in human CF, indicating that this regulation is conserved across species. Using specific ERα- and ERβ-agonists (10−7 M) for 24 h, we identified ERα as repressive and ERβ as inducing factor in female and male rCF, respectively. In addition, E2-induced ERα phosphorylation at Ser118 only in female rCF, whereas Ser105 phosphorylation of ERβ was exclusively found in male rCF. Further, in female rCF we found both ER bound to the collagen I and III promoters using chromatin immunoprecipitation assays. In contrast, in male rCF only ERβ bound to both promoters. In engineered connective tissues (ECT) from rCF, collagen I and III mRNA were down-regulated in female ECT and up-regulated in male ECT by E2. This was accompanied by an impaired condensation of female ECT, whereas male ECT showed an increased condensation and stiffness upon E2-treatment, analysed by rheological measurements. Finally, we confirmed the E2-effect on both collagens in an in vivo mouse model with ovariectomy for E2 depletion, E2 substitution, and pressure overload by transverse aortic constriction. Conclusion The mechanism underlying the sex-specific regulation of collagen I and III in the heart appears to involve E2-mediated differential ERα and ERβ signaling in CFs.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Sandra Kunze ◽  
Vera Regitz-Zagrosek

Clinical and animal studies showed in female pressure-overloaded hearts less cardiac fibrosis and collagen I and III gene expression compared to males, suggesting an inhibitory effect of 17β-Estradiol (E2) on collagens. Therefore we investigated the role of E2 and estrogen receptors (ER) on collagen I and III expression in isolated rat cardiac fibroblasts from both sexes. Cardiac fibroblasts were isolated from adult male and female Wistar rats, and treated with E2 (10-8M), vehicle, ERα and ERβ-agonist (10-7M) and/or pre-treated with ICI 182,780 (10-5M) for 24h. Cellular localization of ER in cardiac fibroblasts with/without E2 was detected by immunofluorescence staining, and expression of both ER was determined by western blot. Expression of collagen I and III was determined by qRT-PCR and western blot. E2-treatment led to a nuclear translocation of ERα and ERβ in cardiac fibroblasts, suggesting the functional activity of ER as transcription factors. Furthermore in cardiac fibroblasts from female rats E2 led to a significant down-regulation of collagen I and III gene and protein expression. In contrast there was a significant increase of collagen I and III levels in fibroblasts isolated from male rat hearts by E2. E2-effect could be inhibited by ICI 182, 780 indicating the involvement of ER. In cardiac fibroblasts from female rats, ERα-agonist treatment led to a significant down-regulation of collagen I and III mRNA level, but ERβ-agonist had no effects. In contrast, ERβ-agonist treatment of cardiac fibroblasts from males increased collagen I and III mRNA, but no changes with ERα agonist-treatment were detected. ERα protein levels displayed no sex differences at basal level. After E2-treatment ERα protein was up-regulated in male cells, but decreased in cardiac fibroblasts from females. ERβ protein was higher in female cells compared to males, but the expression was not regulated by E2 in both sexes. Sex-specific regulation of collagen I and III expression by E2 in cardiac fibroblasts might be responsible for sex-differences in cardiac fibrosis. This might be due to sexually dimorphic ER expression and regulation. Understanding how E2 and ER mediate sex-differences in cardiac remodeling may help to design sex-specific pharmacological interventions.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Lily Neff ◽  
An Van Laer ◽  
Catalin F Baicu ◽  
Michael R Zile ◽  
Amy Bradshaw

Background: Antecedent conditions, like aortic stenosis, can induce left ventricular pressure overload (LVPO), that can lead to Heart Failure with Preserved Ejection Fraction (HFpEF). Myocardial fibrosis and stiffness are key characteristics of HFpEF. Cardiac fibroblasts are the primary cell type regulating ECM production and deposition. In previous studies, biopsies isolated at the time of SAVR surgery, to correct stenosis, and then at 1-year and 5-years post-SAVR showed reductions in hypertrophy and fibrosis demonstrating these processes can regress. However, cellular mechanisms, including fibroblast activity, are poorly defined. Objective: Define mechanisms that contribute to remodeling of ECM before and after LVPO. Methods: LVPO was induced using transverse aortic constriction (TAC). LVPO was relieved by removal of the band (unTAC) at 4 wks. Cardiomyocyte cross-sectional area (CSA), collagen volume fraction (CVF), and protein production was measured by histology and immunoblot for five time points: nonTAC, 2wk TAC, 4wk TAC, 4wk TAC+2wk unTAC, and 4wk TAC+4wk unTAC. Results: In response to LVPO, myocyte CSA increased by 23% at 2wk TAC and by 47% at 4wk. CVF increased by 64% and 204% at 2wk and 4wk TAC, respectively, versus nonTAC. In 2wk TAC hearts, SMA, a marker of fibroblast activation was increased as was production of two collagen cross-linking enzymes, lysyl oxidase (LOX) and LOXL2, in the absence of significant increases in markers of ECM degradation. After unloading, myocyte CSA decreased by 20% in 2wk unTAC versus 4wk TAC and CVF decreased by 38% in 4wk unTAC versus 4wk TAC. Coincident with decreases in CVF, levels of pro-MMP2 increased at 2wk unTAC as did levels of degraded collagen measured by collagen hybridizing peptide reactivity. Whereas markers of ECM deposition, LOX and LOXL2, were not increased in unTAC myocardium, a resurgence of SMA production occurred in 2wk unTAC. Conclusions: In LVPO hearts, hypertrophy was characterized by increases in myocyte CSA, greater CVF, and fibroblast activation with increased production of pro-fibrotic ECM. After unloading, hypertrophy and fibrosis significantly decreased accompanied by increases in ECM degrading activity and reductions in proteins that contribute to collagen assembly.


2009 ◽  
Vol 297 (1) ◽  
pp. H76-H85 ◽  
Author(s):  
Qianli Yu ◽  
Randy Vazquez ◽  
Elham Vali Khojeini ◽  
Chirag Patel ◽  
Raj Venkataramani ◽  
...  

Osteopontin (OPN), a key component of the extracellular matrix, is associated with the fibrotic process during tissue remodeling. OPN and the cytokine interleukin (IL)-18 have been shown to be overexpressed in an array of human cardiac pathologies. In the present study, we determined the role of IL-18 in the regulation of cardiac OPN expression and the subsequent interstitial fibrosis and diastolic dysfunction. We demonstrated parallel increases in IL-18, OPN expression, and interstitial fibrosis in murine models of left ventricular pressure and volume overload. Exogenous recombinant (r)IL-18 administered for 2 wk increased cardiac OPN expression, interstitial fibrosis, and diastolic dysfunction. Stimulation of the T helper (Th)1 lymphocyte phenotype with a selective toll-like receptor (TLR)9 agonist induced cardiac IL-18 and OPN expression, which was associated with increased cardiac fibrillar collagen concentrations and interstitial fibrosis resulting in diastolic dysfunction. rIL-18 induced OPN expression and protein levels in primary of cardiac fibroblast cultures. Conditioned media from TLR9-stimulated T lymphocyte cultures induced IL-18 and OPN expression in cardiac fibroblasts, while blockade of the IL-18 receptor with a neutralizing antibody abolished the increase in OPN expression. Furthermore, a mutation in the transcriptional factor interferon regulatory factor (IRF)1 or IRF1 small interfering RNA (siRNA) resulted in the decreased expression of IL-18 and OPN in cardiac fibroblasts. With pressure overload, IRF1-mutant mice showed downregulation of IL-18 and OPN expression in cardiac tissue, reduced cardiac fibrotic development, and increased left ventricular function compared with wild type. These results provide direct evidence that the induction of IL-18 regulates OPN-mediated cardiac fibrosis and diastolic dysfunction.


2016 ◽  
Vol 229 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Julia Schipke ◽  
Clara Grimm ◽  
Georg Arnstein ◽  
Jens Kockskämper ◽  
Simon Sedej ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Masataka Nishiga ◽  
Takahiro Horie ◽  
Yasuhide Kuwabara ◽  
Osamu Baba ◽  
Tetsushi Nakao ◽  
...  

Background: A highly conserved microRNA, miR-33 is considered as a potential therapeutic target for atherosclerosis, because recent reports, including ours, indicated miR-33 has atherogenic effects by reducing HDL-C. However, the functions of miR-33 in heart failure remain to be elucidated. Methods and results: To clarify the functions of miR-33 involved in cardiac hypertrophy and fibrosis in vivo, we investigated the responses to pressure overload by transverse aortic constriction (TAC) in miR-33 deficient (KO) mice. When subjected to TAC, miR-33 expression level was significantly up-regulated in wild-type (WT) left ventricles, whereas miR-33 KO hearts displayed no less hypertrophic responses than WT hearts. However, interestingly, histological and gene expression analyses showed ameliorated cardiac fibrosis in miR-33 KO hearts compared to WT hearts. Furthermore, we generated cardiac fibroblast specific miR-33 deficient mice, which also showed ameliorated cardiac fibrosis when they were subjected to TAC. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart, because its expression was about 4-folds higher in isolated primary cardiac fibroblasts than cardiomyocytes. Deficiency of miR-33 impaired cell proliferation in primary fibroblasts, which was considered due to altered lipid raft cholesterol content by up-regulated ATP-binding cassette transporter A1/G1. Conclusion: Deficiency of miR-33 impaired fibroblast proliferation in vitro, and ameliorated cardiac fibrosis induced by pressure overload in vivo.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Shuang Li ◽  
Dong Han ◽  
Dachun Yang

Background: Hypertensive ventricular remodeling is a common cause of heart failure. Activation and accumulation of cardiac fibroblasts is the key contributors to this progression. Our previous studies indicate that transient receptor potential ankyrin 1 (TRPA1), a Ca 2+ channel necessary and sufficient, play a prominent role in ventricular remodeling. However, the molecular mechanisms regulating remain poorly understood. Methods: We used TRPA1 agonists cinnamaldehyde (CA) pretreatment and TRPA1 knockout mice to understand the role of TRPA1 in ventricular remodeling of hypertensive heart. We also examine the mechanisms through gene transfection and in vitro experiments. Results: TRPA1 overexpression fully activated myofibroblast transformation, while fibroblasts lacking TRPA1 were refractory to transforming growth factor β (TGF-β) -induced transdifferentiation. TRPA1 knockout mice showed hypertensive ventricular remodeling reversal following pressure overload. We found that the TGF-β induced TRPA1 expression through calcineurin-NFAT-Dyrk1A signaling pathway via the TRPA1 promoter. Once induced, TRPA1 activates the Ca 2+ -responsive protein phosphatase calcineurin, which itself induced myofibroblast transdifferentiation. Moreover, inhibition of calcineurin prevented TRPA1-dependent transdifferentiation. Conclusion: Our study provides the first evidence that TRPA1 regulation in cardiac fibroblasts transformation in response to hypertensive stimulation. The results suggesting a comprehensive pathway for myofibroblast formation in conjunction with TGF-β, Calcineurin, NFAT and Dyrk1A. Furthermore, these data indicate that negative modulation of cardiac fibroblast TRPA1 may represent a therapeutic strategy against hypertensive cardiac remodeling.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Tania A Nevers ◽  
Ane Salvador ◽  
Francisco Velazquez ◽  
Mark Aronovitz ◽  
Robert Blanton

Background: Cardiac fibrogenesis is a major pathogenic factor that occurs in heart failure (HF) and results in contractile dysfunction and ventricular dilation. Recently, we showed that T cell deficient mice (TCRα -/- ) do not develop cardiac fibrosis (CF) and have preserved cardiac function in the thoracic aortic constriction (TAC) mouse model of pressure overload (PO). Specifically, CD4 + T cells are activated in the cardiac draining lymph nodes and infiltrate the LV, where the Th1 and Th17 effector T cell signature transcription factors are significantly upregulated as compared with control mice. However, the T cell subsets involved and the mechanisms by which they contribute to CF and pathogenesis of non-ischemic HF remains to be determined. Thus, we hypothesize that heart infiltrated effector T cells perpetuate the fibrotic response by regulating the differentiation and activation of extracellular matrix-producing cardiac myofibroblasts. Methods and Results: Naïve or effector T cells differentiated in vitro or isolated from mice undergoing TAC or Sham surgery were co-cultured with adult C57BL/6 cardiac fibroblasts (CFB). In contrast with naïve T cells, effector T cells and PO activated T cells strongly adhered to CFB and mediated fibroblast to myofibroblasts transition as depicted by immunofluorescence expression of SMAα. Effector T cell supernatants only slightly mediated this transition, indicating that effector T cells direct contact with CFB, rather than cytokine release is required to mediate CFB transformation. Adoptive transfer of effector, but not naïve T cells, into TCRα -/- recipient mice in the onset of TAC resulted in T cells infiltration into the left ventricle and increased CF. Conclusions: Our data indicate that CD4+ effector T cells directly interact with CFB to induce CF in response to PO induced CF. Future studies will determine the adhesion mechanisms regulating this crosstalk and evaluate the pro-fibrotic mechanisms induced and whether this is a T effector cell specific subset. These results will provide an attractive tool to counteract the inflammatory/fibrotic process as an alternative option for the treatment of CF in non- ischemic HF.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Sundaravadivel Balasubramanian ◽  
Harinath Kasiganesan ◽  
Lakeya Quinones ◽  
Yuhua Zhang ◽  
Amy Bradshaw ◽  
...  

During prolonged hypertrophic insult to the myocardium, while the function of cardiomyocytes needs to be protected, the hyperactivation of cardiac fibroblasts has to be curbed to prevent fibrosis. Previously, we showed that integrin-mediated non-receptor tyrosine kinase (NRTK) activation is required for normal functioning of both cardiac fibroblasts and cardiomyocytes. We hypothesized that inhibition of NRTKs in cardiac fibroblasts without affecting cardiomyocytes would be beneficial to the stressed myocardium. Our initial studies using kinase inactive forms of Src, Pyk2 and FAK expressed adenovirally in isolated primary cardiac fibroblasts showed that the pro-fibrotic signaling events as studied by fibronectin and collagen deposition are downregulated. Our in vivo studies in mouse transverse aortic constriction (TAC) model suggest that dasatinib, a multikinase NRTK inhibitor administration via a peritoneally implanted mini-osmotic pump is able to preserve ventricular geometry and function and reduce the accumulation of fibrotic extracellular matrix (ECM) proteins upon 4 wk pressure overload. Data obtained from cell culture experiments with kinase inactive NRTKs and dasatinib suggest that NRTK inhibition is able to reduce the proliferation, migration and mitogenic signaling in cardiac fibroblasts without affecting the cell survival pathways in cardiomyocytes. These data indicate that NRTKs play a significant pro-fibrotic role in cardiac fibroblasts and curbing the activity of NRTKs could be a potential therapeutic approach to treat fibrosis in hypertrophic heart diseases.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Suresh K Verma ◽  
Venkata N Girikipathi ◽  
Maria Cimini ◽  
Zhongjian Cheng ◽  
Moshin Khan ◽  
...  

Background: Activated fibroblasts (myoFBs) play critical role in cardiac fibrosis, however, their origin in diseased heart remains uncertain. Previous studies suggest the contribution of bone marrow fibroblasts progenitor cells (FPC) in pressure overload (PO)-induced cardiac fibrosis and inflammation acts as catalyst in this process. Recently others and we have shown that paracrine mediators packaged in exosomes play important role in cardiac pathophysiology. Thus, we hypothesized that exosome-derived from IL10KO-FPC augments PO-induced resident cardiac fibroblast activation and therefore, aggravate cardiac fibrosis. Methods and Results: Cardiac fibrosis was induced in Wild-type (WT) and IL10-knockout (IL10KO) mice by transverse aortic constriction (TAC). TAC-induced left ventricular (LV) dysfunction and fibrosis were further exaggerated in IL10KO mice. PO-enhanced FPC (Prominin1 + cells) mobilization and homing in IL10KO mice compared to WT mice. To establish the IL10KO-FPC paracrine signaling, exosomes were isolated from WT and IL10KO BM-FPC culture media and characterized for proteins/miRNA. IL10 KO FPC-exosomes showed altered packaging of signature fibrotic miR and proteins. To explore whether FPC-exosomes modulate resident fibroblast activation, adult cardiac fibroblasts were treated with WT and IL10KO FPC-derived exosomes. IL10KO-FPC-derived exosomes exaggerate TGFβ 2 -induced activation of adult fibroblasts. These data suggest that fibrotic remodeling factors (miRs and/or proteins) packaged in IL10KO-FPC exosomes are sufficient to enhance the resident cardiac fibroblast activation and mediate cardiac fibrotic remodeling IL10 treatment significantly inhibits TGFβ 2 -induced FPC to myoFBs transition. Conclusion: Taken together, our findings suggest that paracrine factors secreted by BM-FPC augment resident cardiac fibroblast activation and fibrosis in pressure overloaded myocardium and IL10 negatively regulates this process. Ongoing investigations using molecular approaches will provide a better understanding on the mechanistic and therapeutic aspects of IL10 on PO-induced cardiac fibrosis and heart failure.


Sign in / Sign up

Export Citation Format

Share Document