scholarly journals The Dominating Role of N-Deacetylase/N-Sulfotransferase 1 in Forming Domain Structures in Heparan Sulfate

2011 ◽  
Vol 286 (22) ◽  
pp. 19768-19776 ◽  
Author(s):  
Juzheng Sheng ◽  
Renpeng Liu ◽  
Yongmei Xu ◽  
Jian Liu

Heparan sulfate (HS) is a highly sulfated polysaccharide participated in essential physiological functions from regulating cell growth to blood coagulation. HS contains sulfated domains known as N-S domains and low sulfate domains known as N-Ac domains. The distribution of the domain structures is likely governed by the action of glucosaminyl N-deacetylase/N-sulfotransferase (NDST). Here, we sought to determine the substrate specificity of NDST using model substrates and recombinant NDST protein. We discovered that NDST-1 carries out the modification in a highly ordered fashion. The enzyme sulfates the substrate from the nonreducing end toward the reducing end consecutively, leading to the product with a cluster of N-sulfo glucosamine residues. Furthermore, a preexisting N-sulfo glucosamine residue prevents the action of NDST-1 at the residues immediately located at the nonreducing end, allowing the formation of an N-Ac domain. Our results provide the long sought evidence for understanding the formation of sulfated versus nonsulfated domains in the HS isolated from cells and tissues. The study demonstrates the regulating role of NDST-1 in mapping the sulfation patterns of HS.

Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 503
Author(s):  
Katelyn Arnold ◽  
Yi-En Liao ◽  
Jian Liu

Heparan sulfate is a highly sulfated polysaccharide abundant on the surface of hepatocytes and surrounding extracellular matrix. Emerging evidence demonstrates that heparan sulfate plays an important role in neutralizing the activities of proinflammatory damage associate molecular patterns (DAMPs) that are released from hepatocytes under pathological conditions. Unlike proteins and nucleic acids, isolation of homogenous heparan sulfate polysaccharides from biological sources is not possible, adding difficulty to study the functional role of heparan sulfate. Recent advancement in the development of a chemoenzymatic approach allows production of a large number of structurally defined oligosaccharides. These oligosaccharides are used to probe the physiological functions of heparan sulfate in liver damage under different pathological conditions. The findings provide a potential new therapeutic agent to treat liver diseases that are associated with excessive inflammation.


1966 ◽  
Vol 15 (03/04) ◽  
pp. 519-538 ◽  
Author(s):  
J Levin ◽  
E Beck

SummaryThe role of intravascular coagulation in the production of the generalized Shwartzman phenomenon has been evaluated. The administration of endotoxin to animals prepared with Thorotrast results in activation of the coagulation mechanism with the resultant deposition of fibrinoid material in the renal glomeruli. Anticoagulation prevents alterations in the state of the coagulation system and inhibits development of the renal lesions. Platelets are not primarily involved. Platelet antiserum produces similar lesions in animals prepared with Thorotrast, but appears to do so in a manner which does not significantly involve intravascular coagulation.The production of adrenal cortical hemorrhage, comparable to that seen in the Waterhouse-Friderichsen syndrome, following the administration of endotoxin to animals that had previously received ACTH does not require intravascular coagulation and may not be a manifestation of the generalized Shwartzman phenomenon.


1922 ◽  
Vol 50 (2) ◽  
pp. 455-462
Author(s):  
André Gratia ◽  
P.A. Levene
Keyword(s):  

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Author(s):  
Zhangjie Wang ◽  
Katelyn Arnold ◽  
Vijay Manohar Dhurandhare ◽  
Yongmei Xu ◽  
Jian Liu

Heparan sulfate (HS) is a highly sulfated polysaccharide playing essential physiological and pathophysiological roles in the animal kingdom.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1180
Author(s):  
Kayvan Khoramipour ◽  
Karim Chamari ◽  
Amirhosein Ahmadi Hekmatikar ◽  
Amirhosein Ziyaiyan ◽  
Shima Taherkhani ◽  
...  

Adiponectin (a protein consisting of 244 amino acids and characterized by a molecular weight of 28 kDa) is a cytokine that is secreted from adipose tissues (adipokine). Available evidence suggests that adiponectin is involved in a variety of physiological functions, molecular and cellular events, including lipid metabolism, energy regulation, immune response and inflammation, and insulin sensitivity. It has a protective effect on neurons and neural stem cells. Adiponectin levels have been reported to be negatively correlated with cancer, cardiovascular disease, and diabetes, and shown to be affected (i.e., significantly increased) by proper healthy nutrition. The present review comprehensively overviews the role of adiponectin in a range of diseases, showing that it can be used as a biomarker for diagnosing these disorders as well as a target for monitoring the effectiveness of preventive and treatment interventions.


2021 ◽  
Author(s):  
Wan Ma ◽  
Li Jia ◽  
Qingqing Xiong ◽  
Yunfei Feng ◽  
Huahua Du

Iron plays a vital role in the metabolism of adipose tissue. On the one hand, iron is essential for differentiation, endocrine, energy supply and other physiological functions of adipocyte. Iron...


Sign in / Sign up

Export Citation Format

Share Document