scholarly journals Genetic Analysis of the Subunit Organization and Function of the Conserved Oligomeric Golgi (COG) Complex

2005 ◽  
Vol 280 (38) ◽  
pp. 32736-32745 ◽  
Author(s):  
Toshihiko Oka ◽  
Eliza Vasile ◽  
Marsha Penman ◽  
Carl D. Novina ◽  
Derek M. Dykxhoorn ◽  
...  
2018 ◽  
Vol 29 (8) ◽  
pp. 964-974 ◽  
Author(s):  
Leslie K. Climer ◽  
Irina D. Pokrovskaya ◽  
Jessica B. Blackburn ◽  
Vladimir V. Lupashin

The conserved oligomeric Golgi (COG) complex is a vesicle tether of the “complexes associated with tethering containing helical rods” family, which functions on the cytoplasmic side of Golgi. It is currently unknown whether COG function, or function of any multisubunit vesicular tether, depends on cycling between the membrane and cytosol. Therefore, we permanently anchored key subunits of COG subcomplexes (COG4, COG7, and COG8) to Golgi membranes using transmembrane protein TMEM115 (TMEM-COG). All TMEM-COG subunits tested were Golgi localized, integrated into the COG complex, and stabilized membrane association of endogenous subunits. Interestingly, TMEM-COG4 and TMEM-COG7 equally rescued COG function in organization of Golgi markers, glycosylation, and abundance of COG-sensitive proteins. In contrast, TMEM-COG8 was not as effective, indicating that N-terminal attachment of COG8 interfered with overall COG structure and function, and none of the TMEM-COG subunits rescued the abnormal Golgi architecture caused by COG knockout. Collectively, these data indicate that both subcomplexes of the COG complex can perform most of COG function when permanently attached to membranes and that the cytosolic pool of COG is not completely essential to COG function.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256472
Author(s):  
Vincent P. Klink ◽  
Omar Darwish ◽  
Nadim W. Alkharouf ◽  
Bisho R. Lawaju ◽  
Rishi Khatri ◽  
...  

The conserved oligomeric Golgi (COG) complex maintains correct Golgi structure and function during retrograde trafficking. Glycine max has 2 paralogs of each COG gene, with one paralog of each gene family having a defense function to the parasitic nematode Heterodera glycines. Experiments presented here show G. max COG paralogs functioning in defense are expressed specifically in the root cells (syncytia) undergoing the defense response. The expressed defense COG gene COG7-2-b is an alternate splice variant, indicating specific COG variants are important to defense. Transcriptomic experiments examining RNA isolated from COG overexpressing and RNAi roots show some COG genes co-regulate the expression of other COG complex genes. Examining signaling events responsible for COG expression, transcriptomic experiments probing MAPK overexpressing roots show their expression influences the relative transcript abundance of COG genes as compared to controls. COG complex paralogs are shown to be found in plants that are agriculturally relevant on a world-wide scale including Manihot esculenta, Zea mays, Oryza sativa, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Brassica rapa, Elaes guineensis and Saccharum officinalis and in additional crops significant to U.S. agriculture including Beta vulgaris, Solanum tuberosum, Solanum lycopersicum and Gossypium hirsutum. The analyses provide basic information on COG complex biology, including the coregulation of some COG genes and that MAPKs functioning in defense influence their expression. Furthermore, it appears in G. max and likely other crops that some level of neofunctionalization of the duplicated genes is occurring. The analysis has identified important avenues for future research broadly in plants.


Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1217-1227 ◽  
Author(s):  
B.T. Kehl ◽  
K.O. Cho ◽  
K.W. Choi

The Drosophila notum, the dorsal body wall of the thorax, is subdivided genetically into longitudinal domains (Calleja, M., Moreno, E., Pelaz, S. and Morata, G. (1996) Science 274, 252–255). Two homeobox genes clustered in the iroquois complex, araucan and caupolican, regulate proneural genes and are required for development of sensory bristles in the lateral notum (Gomez-Skarmeta, J. L., del Corral, R. D., de la Calle-Mustienes, E., Ferres-Marco, D. and Modolell, J. (1996) Cell 85, 95–105). An iroquois-related homeobox gene, mirror, was recently isolated and is localized close to the iroquois complex region (McNeil, H., Yang, C.-H., Brodsky, M., Ungos, J. and Simon, M. A. (1997) Genes and Development 11, 1073–1082; this study). We show that mirror is required for the formation of the alula and a subset of sensory bristles in the lateral domain of the notum. Genetic analysis suggests that mirror and the other iroquois genes interact to form the alula as well as the sensory organs. Based on similarities between mirror and the iroquois genes in their genetic map positions, expression, protein structure and function, mirror is considered a new member of the iroquois complex and is involved in prepatterning sensory precursor cells in the lateral notum.


1996 ◽  
Vol 22 (2-3) ◽  
pp. 111-114
Author(s):  
Hideaki Shiraishi ◽  
Yoshiro Shimura

2010 ◽  
Vol 21 (1) ◽  
pp. 55 ◽  
Author(s):  
A. J. Pittard ◽  
G. B. Cox

Frank Gibson died in Canberra on 11 July 2008. Frank was a highly distinguished research scientist who will be remembered for his pioneering studies in identifying the branch-point compound in the pathway of biosynthesis of a large number of important aromatic compounds followed by a detailed biochemical and genetic analysis of many of the pathways leading to the aromatic amino acids and the so-called aromatic vitamins. Studies on ubiquinone synthesis and function led to an examination of oxidative phosphorylation and the structure and function of the F1F0-ATPase in the bacterium Escherichia coli. This work resulted in the formulation of a highly innovative model, involving rotating subunits of the F0 segment within the membrane and offering an explanation for the mechanism linking proton flow and ATP synthesis.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 707 ◽  
Author(s):  
Susan Realegeno ◽  
Lalita Priyamvada ◽  
Amrita Kumar ◽  
Jessica B. Blackburn ◽  
Claire Hartloge ◽  
...  

Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1–COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.


Sign in / Sign up

Export Citation Format

Share Document