scholarly journals Conserved Oligomeric Golgi (COG) Complex Proteins Facilitate Orthopoxvirus Entry, Fusion and Spread

Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 707 ◽  
Author(s):  
Susan Realegeno ◽  
Lalita Priyamvada ◽  
Amrita Kumar ◽  
Jessica B. Blackburn ◽  
Claire Hartloge ◽  
...  

Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1–COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.

2011 ◽  
Vol 22 (8) ◽  
pp. 1148-1166 ◽  
Author(s):  
Laura García-Expósito ◽  
Jonathan Barroso-González ◽  
Isabel Puigdomènech ◽  
José-David Machado ◽  
Julià Blanco ◽  
...  

As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry.


2021 ◽  
Vol 28 ◽  
Author(s):  
Prem Kumar Kushwaha ◽  
Neha Kumari ◽  
Sneha Nayak ◽  
Keshav Kishor ◽  
Ashoke Sharon

: Outbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARS-CoV-2) initiated in Wuhan city, China, in December 2019 which continued to spread internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutinin-mediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related-viral diseases, including COVID-19. : It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. : The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. : The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at S1/S2 subunit interface in S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and available scope for the new drug discovery process targeting SARS-related virus entry into the host cell.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Jérémie Decalf ◽  
Marion Desdouits ◽  
Vasco Rodrigues ◽  
François-Xavier Gobert ◽  
Matteo Gentili ◽  
...  

ABSTRACT Along with CD4+ T lymphocytes, macrophages are a major cellular source of HIV-1 replication and a potential viral reservoir. Following entry and reverse transcription in macrophages, cloaking of the viral cDNA by the HIV-1 capsid limits its cytosolic detection, enabling efficient replication. However, whether incoming HIV-1 particles are sensed by macrophages prior to reverse transcription remains unclear. Here, we show that HIV-1 triggers a broad expression of interferon (IFN)-stimulated genes (ISG) in monocyte-derived macrophages within a few hours after infection. This response does not require viral reverse transcription or the presence of HIV-1 RNA within particles, but viral fusion is essential. This response is elicited by viruses carrying different envelope proteins and thus different receptors to proceed for viral entry. Expression of ISG in response to viral entry requires TBK1 activity and type I IFNs signaling. Remarkably, the ISG response is transient but affects subsequent viral spread. Together, our results shed light on an early step of HIV-1 sensing by macrophages at the level of entry, which confers an early protection through type I IFN signaling and has potential implications in controlling the infection. IMPORTANCE HIV infection is restricted to T lymphocytes and macrophages. HIV-1-infected macrophages are found in many tissues of infected patients, even under antiretroviral therapy, and are considered a viral reservoir. How HIV-1 is detected and what type of responses are elicited upon sensing remain in great part elusive. The kinetics and localization of the production of cytokines such as interferons in response to HIV is of critical importance to understanding how the infection and the immune response are established. Our study provides evidence that macrophages can detect HIV-1 as soon as it enters the cell. Interestingly, this sensing is independent of the presence of viral nucleic acids within the particles but requires their fusion with the macrophages. This triggers a low interferon response, which activates an antiviral program protecting cells against further viral challenge and thus potentially limiting the spread of the infection.


2021 ◽  
Author(s):  
Andreia L Pinto ◽  
Ranjit K Rai ◽  
Jonathan C Brown ◽  
Paul Griffin ◽  
James R Edgar ◽  
...  

AbstractUltrastructural studies of SARS-CoV-2 infected cells are crucial to better understand the mechanisms of viral entry and budding within host cells. Many studies are limited by the lack of access to appropriate cellular models. As the airway epithelium is the primary site of infection it is essential to study SARS-CoV-2 infection of these cells. Here, we examined human airway epithelium, grown as highly differentiated air-liquid interface cultures and infected with three different isolates of SARS-CoV-2 including the B.1.1.7 variant (Variant of Concern 202012/01) by transmission electron microscopy and tomography. For all isolates, the virus infected ciliated but not goblet epithelial cells. Two key SARS-CoV-2 entry molecules, ACE2 and TMPRSS2, were found to be localised to the plasma membrane including microvilli but excluded from cilia. Consistent with these observations, extracellular virions were frequently seen associated with microvilli and the apical plasma membrane but rarely with ciliary membranes. Profiles indicative of viral fusion at the apical plasma membrane demonstrate that the plasma membrane is one site of entry where direct fusion releasing the nucleoprotein-encapsidated genome occurs. Intact intracellular virions were found within ciliated cells in compartments with a single membrane bearing S glycoprotein. Profiles strongly suggesting viral budding from the membrane was observed in these compartments and this may explain how virions gain their S glycoprotein containing envelope.


2020 ◽  
Vol 21 (5) ◽  
pp. 1676 ◽  
Author(s):  
James Elste ◽  
Dominik Kaltenbach ◽  
Vraj R. Patel ◽  
Max T. Nguyen ◽  
Harsh Sharthiya ◽  
...  

Human cytomegalovirus (HCMV) infections are wide-spread among the general population with manifestations ranging from asymptomatic to severe developmental disabilities in newborns and life-threatening illnesses in individuals with a compromised immune system. Nearly all current drugs suffer from one or more limitations, which emphasizes the critical need to develop new approaches and new molecules. We reasoned that a ‘poly-pharmacy’ approach relying on simultaneous binding to multiple receptors involved in HCMV entry into host cells could pave the way to a more effective therapeutic outcome. This work presents the study of a synthetic, small molecule displaying pleiotropicity of interactions as a competitive antagonist of viral or cell surface receptors including heparan sulfate proteoglycans and heparan sulfate-binding proteins, which play important roles in HCMV entry and spread. Sulfated pentagalloylglucoside (SPGG), a functional mimetic of heparan sulfate, inhibits HCMV entry into human foreskin fibroblasts and neuroepithelioma cells with high potency. At the same time, SPGG exhibits no toxicity at levels as high as 50-fold more than its inhibition potency. Interestingly, cell-ELISA assays showed downregulation in HCMV immediate-early gene 1 and 2 (IE 1&2) expression in presence of SPGG further supporting inhibition of viral entry. Finally, HCMV foci were observed to decrease significantly in the presence of SPGG suggesting impact on viral spread too. Overall, this work offers the first evidence that pleiotropicity, such as demonstrated by SPGG, may offer a new poly-therapeutic approach toward effective inhibition of HCMV.


2020 ◽  
Vol 13 (12) ◽  
pp. 447
Author(s):  
Kenana Al Adem ◽  
Aya Shanti ◽  
Cesare Stefanini ◽  
Sungmun Lee

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a virus belonging to the Coronavirus family, is now known to cause Coronavirus Disease (Covid-19) which was first recognized in December 2019. Covid-19 leads to respiratory illnesses ranging from mild infections to pneumonia and lung failure. Strikingly, within a few months of its first report, Covid-19 has spread worldwide at an exceptionally high speed and it has caused enormous human casualties. As yet, there is no specific treatment for Covid-19. Designing inhibitory drugs that can interfere with the viral entry process constitutes one of the main preventative therapies that could combat SARS-CoV-2 infection at an early stage. In this review, we provide a brief introduction of the main features of coronaviruses, discuss the entering mechanism of SARS-CoV-2 into human host cells and review small molecules that inhibit SARS-CoV-2 entry into host cells. Specifically, we focus on small molecules, identified by experimental validation and/or computational prediction, that target the SARS-CoV-2 spike protein, human angiotensin converting enzyme 2 (ACE2) receptor and the different host cell proteases that activate viral fusion. Given the persistent rise in Covid-19 cases to date, efforts should be directed towards validating the therapeutic effectiveness of these identified small molecule inhibitors.


2020 ◽  
Author(s):  
Laura Lafon-Hughes

BACKGROUND It is common knowledge that vaccination has improved our life quality and expectancy since it succeeded in achieving almost eradication of several diseases including chickenpox (varicella), diphtheria, hepatitis A and B, measles, meningococcal, mumps, pneumococcal, polio, rotavirus, rubella, tetanus and whooping cough (pertussis) Vaccination success is based on vaccine induction of neutralizing antibodies that help fight the infection (e.g. by a virus), preventing the disease. Conversely, Antibody-dependent enhancement (ADE) of a viral infection occurs when anti-viral antibodies facilitate viral entry into host cells and enhance viral infection in these cells. ADE has been previously studied in Dengue and HIV viruses and explains why a second infection with Dengue can be lethal. As already reviewed in Part I and Part II, SARS-Cov-2 shares with HIV not only 4 sequences in the Spike protein but also the capacity to attack the immune system. OBJECTIVE As HIV presents ADE, we wondered whether this was also the case regarding SARS-CoV-2. METHODS A literature review was done through Google. RESULTS SARS-CoV-2 presents ADE. As SARS, which does not have the 4 HIV-like inserts, has the same property, ADE would not be driven by the HIV-like spike sequences. CONCLUSIONS ADE can explain the failure of herd immunity-based strategies and will also probably hamper anti-SARS-CoV-2 vaccine development. As reviewed in Part I, there fortunately are promising therapeutic strategies for COVID-19, which should be further developed. In the meantime, complementary countermeasures to protect mainly the youth from this infection are presented to be discussed in Part V Viewpoint.


2020 ◽  
Vol 11 ◽  
Author(s):  
Dimitris G. Placantonakis ◽  
Maria Aguero-Rosenfeld ◽  
Abdallah Flaifel ◽  
John Colavito ◽  
Kenneth Inglima ◽  
...  

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received wide attention, but the mechanisms remain uncertain. Here, we describe computational data from public domain RNA-seq datasets and cerebrospinal fluid data from adult patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of the central nervous system is unlikely. We found that the mRNAs encoding the ACE2 receptor and the TMPRSS2 transmembrane serine protease, both of which are required for viral entry into host cells, are minimally expressed in the major cell types of the brain. In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was validated for CSF studies using stringent criteria; and second, 61% of these patients had CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and that other etiologies are more likely mechanisms.


2021 ◽  
Vol 7 (7) ◽  
pp. 553
Author(s):  
Bin Gao ◽  
Shunyi Zhu

Coronavirus Disease 2019 (COVID−19) elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS−CoV−2) is calling for novel targeted drugs. Since the viral entry into host cells depends on specific interactions between the receptor−binding domain (RBD) of the viral Spike protein and the membrane−bound monocarboxypeptidase angiotensin converting enzyme 2 (ACE2), the development of high affinity RBD binders to compete with human ACE2 represents a promising strategy for the design of therapeutics to prevent viral entry. Here, we report the discovery of such a binder and its improvement via a combination of computational and experimental approaches. The binder micasin, a known fungal defensin from the dermatophytic fungus Microsporum canis with antibacterial activity, can dock to the crevice formed by the receptor−binding motif (RBM) of RBD via an extensive shape complementarity interface (855.9 Å2 in area) with numerous hydrophobic and hydrogen−bonding interactions. Using microscale thermophoresis (MST) technique, we confirmed that micasin and its C−terminal γ−core derivative with multiple predicted interacting residues exhibited a low micromolar affinity to RBD. Expanding the interface area of micasin through a single point mutation to 970.5 Å2 accompanying an enhanced hydrogen bond network significantly improved its binding affinity by six−fold. Our work highlights the naturally occurring fungal defensins as an emerging resource that may be suitable for the development into antiviral agents for COVID−19.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1535-1542 ◽  
Author(s):  
Mark Lee ◽  
Sukalyan Chatterjee ◽  
Kevin Struhl

Abstract The Cyc8-Tup1 corepressor complex is targeted to promoters by pathway-specific DNA-binding repressors, thereby inhibiting the transcription of specific classes of genes. Genetic screens have identified mutations in a variety of Pol II holoenzyme components (Srb8, Srb9, Srb10, Srb11, Sin4, Rgr1, Rox3, and Hrs1) and in the N-terminal tails of histones H3 and H4 that weaken repression by Cyc8-Tup1. Here, we analyze the effect of individual and multiple mutations in many of these components on transcriptional repression of natural promoters that are regulated by Cyc8-Tup1. In all cases tested, individual mutations have a very modest effect on SUC2 RNA levels and no detectable effect on levels of ANB1, MFA2, and RNR2. Furthermore, multiple mutations within the Srb components, between Srbs and Sin4, and between Srbs and histone tails affect Cyc8-Tup1 repression to the same modest extent as the individual mutations. These results argue that the weak effects of the various mutations on repression by Cyc8-Tup1 are not due to redundancy among components of the Pol II machinery, and they argue against a simple redundancy between the holoenzyme and chromatin pathways. In addition, phenotypic analysis indicates that, although Srbs8–11 are indistinguishable with respect to Cyc8-Tup1 repression, the individual Srbs are functionally distinct in other respects. Genetic interactions among srb mutations imply that a balance between the activities of Srb8 + Srb10 and Srb11 is important for normal cell growth.


Sign in / Sign up

Export Citation Format

Share Document