scholarly journals Identification of Common and Unique Peptide Substrate Preferences for the UDP-GalNAc:Polypeptide α-N-acetylgalactosaminyltransferases T1 and T2 Derived from Oriented Random Peptide Substrates

2006 ◽  
Vol 281 (43) ◽  
pp. 32403-32416 ◽  
Author(s):  
Thomas A. Gerken ◽  
Jayalakshmi Raman ◽  
Timothy A. Fritz ◽  
Oliver Jamison

A large family of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) catalyzes the first step of mucin-type protein O-glycosylation by transferring GalNAc to serine and threonine residues of acceptor polypeptides. The acceptor peptide substrate specificity and specific protein targets of the individual ppGalNAc T family members remain poorly characterized and poorly understood, despite the fact that mutations in two individual isoforms are deleterious to man and the fly. In this work a series of oriented random peptide substrate libraries, based on the GAGAXXXTXXXAGAGK sequence motif (where X = randomized positions), have been used to obtain the first comprehensive determination of the peptide substrate specificities of the mammalian ppGalNAc T1 and T2 isoforms. ppGalNAc T-glycosylated random peptides were isolated by lectin affinity chromatography, and transferase amino acid preferences were determined by Edman amino acid sequencing. The results reveal common and unique position-sensitive features for both transferases, consistent with previous reports of the preferences of ppGalNAc T1 and T2. The random peptide substrates also reveal additional specific features that have never been described before that are consistent with the x-ray crystal structures of the two transferases and furthermore are reflected in a data base analysis of in vivo O-glycosylation sites. By using the transferase-specific preferences, optimum and selective acceptor peptide substrates have been generated for each transferase. This approach represents a relatively complete, facile, and reproducible method for obtaining ppGalNAc T peptide substrate specificity. Such information will be invaluable for identifying isoform-specific peptide acceptors, creating isoform-specific substrates, and predicting O-glycosylation sites.

2000 ◽  
Vol 20 (12) ◽  
pp. 4381-4392 ◽  
Author(s):  
Cynthia Evans Trueblood ◽  
Victor L. Boyartchuk ◽  
Elizabeth A. Picologlou ◽  
David Rozema ◽  
C. Dale Poulter ◽  
...  

ABSTRACT Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed. In this study, we evaluated processing of a-factor variants with all possible single amino acid substitutions at either the a1, the a2, or the X position of the a-factor Ca1a2X sequence, CVIA. The substrate specificity of the two known yeast CaaX proteases, Afc1p and Rce1p, was investigated in vivo. Both Afc1p and Rce1p were able to proteolyze a-factor with A, V, L, I, C, or M at the a1 position, V, L, I, C, or M at the a2 position, or any amino acid at the X position that was acceptable for prenylation of the cysteine. Eight additional a-factor variants with a1 substitutions were proteolyzed by Rce1p but not by Afc1p. In contrast, Afc1p was able to proteolyze additional a-factor variants that Rce1p may not be able to proteolyze. In vitro assays indicated that farnesylation was compromised or undetectable for 11 a-factor variants that produced no detectable halo in the wild-type AFC1 RCE1 strain. The isolation of mutations in RCE1 that improved proteolysis of a-factor-CAMQ, indicated that amino acid substitutions E139K, F189L, and Q201R in Rce1p affected its substrate specificity.


2020 ◽  
Vol 19 (03) ◽  
pp. 2040003 ◽  
Author(s):  
Jonathon E. Mohl ◽  
Thomas Gerken ◽  
Ming-Ying Leung

Mucin-type O-glycosylation is one of the most common post-translational modifications of proteins. This glycosylation is initiated in the Golgi by the addition of the sugar N-acetylgalactosamine (GalNAc) onto protein Ser and Thr residues by a family of polypeptide GalNAc transferases. In humans, there are 20 isoforms that are differentially expressed across tissues that serve multiple important biological roles. Using random peptide substrates, isoform specific amino acid preferences have been obtained in the form of enhancement values (EV). These EVs alone have previously been used to predict O-glycosylation sites via the web based ISOGlyP (Isoform Specific O-Glycosylation Prediction) tool. Here, we explore additional protein features to determine whether these can complement the random peptide derived enhancement values and increase the predictive power of ISOGlyP. The inclusion of additional protein substrate features (such as secondary structure and surface accessibility) was found to increase sensitivity with minimal loss of specificity, when tested with three different published in vivo O-glycoproteomics data sets, thus increasing the overall accuracy of the ISOGlyP predictions.


2006 ◽  
Vol 398 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Yukiko Mizutani ◽  
Akio Kihara ◽  
Yasuyuki Igarashi

The LASS (longevity assurance homologue) family members are highly conserved from yeasts to mammals. Five mouse and human LASS family members, namely LASS1, LASS2, LASS4, LASS5 and LASS6, have been identified and characterized. In the present study we cloned two transcriptional variants of hitherto-uncharacterized mouse LASS3 cDNA, which encode a 384-amino-acid protein (LASS3) and a 419-amino-acid protein (LASS3-long). In vivo, [3H]dihydrosphingosine labelling and electrospray-ionization MS revealed that overproduction of either LASS3 isoform results in increases in several ceramide species, with some preference toward those having middle- to long-chain-fatty acyl-CoAs. A similar substrate preference was observed in an in vitro (dihydro)ceramide synthase assay. These results indicate that LASS3 possesses (dihydro)ceramide synthesis activity with relatively broad substrate specificity. We also found that, except for a weak display in skin, LASS3 mRNA expression is limited almost solely to testis, implying that LASS3 plays an important role in this gland.


2002 ◽  
Vol 68 (7) ◽  
pp. 3321-3327 ◽  
Author(s):  
Petra Simic ◽  
Juliane Willuhn ◽  
Hermann Sahm ◽  
Lothar Eggeling

ABSTRACT l-Threonine can be made by the amino acid-producing bacterium Corynebacterium glutamicum. However, in the course of this process, some of the l-threonine is degraded to glycine. We detected an aldole cleavage activity of l-threonine in crude extracts with an activity of 2.2 nmol min−1 (mg of protein)−1. In order to discover the molecular reason for this activity, we cloned glyA, encoding serine hydroxymethyltransferase (SHMT). By using affinity-tagged glyA, SHMT was isolated and its substrate specificity was determined. The aldole cleavage activity of purified SHMT with l-threonine as the substrate was 1.3 μmol min−1 (mg of protein)−1, which was 4% of that with l-serine as substrate. Reduction of SHMT activity in vivo was obtained by placing the essential glyA gene in the chromosome under the control of P tac , making glyA expression isopropylthiogalactopyranoside dependent. In this way, the SHMT activity in an l-threonine producer was reduced to 8% of the initial activity, which led to a 41% reduction in glycine, while l-threonine was simultaneously increased by 49%. The intracellular availability of l-threonine to aldole cleavage was also reduced by overexpressing the l-threonine exporter thrE. In C. glutamicum DR-17, which overexpresses thrE, accumulation of 67 mM instead of 49 mM l-threonine was obtained. This shows that the potential for amino acid formation can be considerably improved by reducing its intracellular degradation and increasing its export.


Glycobiology ◽  
2020 ◽  
Author(s):  
Jonathon E Mohl ◽  
Thomas A Gerken ◽  
Ming-Ying Leung

Abstract Mucin-type O-glycosylation is one of the most common posttranslational modifications of proteins. The abnormal expression of various polypeptide GalNAc-transferases (GalNAc-Ts) which initiate and define sites of O-glycosylation are linked to many cancers and other diseases. Current O-glycosyation prediction programs utilize O-glycoproteomics data obtained without regard to the transferase isoform (s) responsible for the glycosylation. With 20 different GalNAc-Ts in humans, having an ability to predict and interpret O-glycosylation sites in terms of specific GalNAc-T isoforms is invaluable. To fill this gap, ISOGlyP (Isoform-Specific O-Glycosylation Prediction) has been developed. Using position-specific enhancement values generated based on GalNAc-T isoform-specific amino acid preferences, ISOGlyP predicts the propensity that a site would be glycosylated by a specific transferase. ISOGlyP gave an overall prediction accuracy of 70% against in vivo data, which is comparable to that of the NetOGlyc4.0 predictor. Additionally, ISOGlyP can identify the known effects of long- and short-range prior glycosylation and can generate potential peptide sequences selectively glycosylated by specific isoforms. ISOGlyP is freely available for use at ISOGlyP.utep.edu. The code is also available on GitHub (https://github.com/jonmohl/ISOGlyP).


2008 ◽  
Vol 416 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Yoshikuni Goto ◽  
Hiroe Tanji ◽  
Akira Hattori ◽  
Masafumi Tsujimoto

ERAP-1 (endoplasmic-reticulum aminopeptidase-1) is a multifunctional enzyme with roles in the regulation of blood pressure, angiogenesis and the presentation of antigens to MHC class I molecules. Whereas the enzyme shows restricted specificity toward synthetic substrates, its substrate specificity toward natural peptides is rather broad. Because of the pathophysiological significance of ERAP-1, it is important to elucidate the molecular basis of its enzymatic action. In the present study we used site-directed mutagenesis to identify residues affecting the substrate specificity of human ERAP-1 and identified Gln181 as important for enzymatic activity and substrate specificity. Replacement of Gln181 by aspartic acid resulted in a significant change in substrate specificity, with Q181D ERAP-1 showing a preference for basic amino acids. In addition, Q181D ERAP-1 cleaved natural peptides possessing a basic amino acid at the N-terminal end more efficiently than did the wild-type enzyme, whereas its cleavage of peptides with a non-basic amino acid was significantly reduced. Another mutant enzyme, Q181E, also revealed some preference for peptides with a basic N-terminal amino acid, although it had little hydrolytic activity toward the synthetic peptides tested. Other mutant enzymes, including Q181N and Q181A ERAP-1s, revealed little enzymatic activity toward synthetic or peptide substrates. These results indicate that Gln181 is critical for the enzymatic activity and substrate specificity of ERAP-1.


1987 ◽  
Author(s):  
W J Suttie ◽  
A Cheung ◽  
M G Wood

The vitamin K-dependent microsomal carboxylase converts glutamyl residues in precursor proteins to γ-carboxyglutamyl (Gla) residues in completed proteins. The enzyme activity is present in significant activities in most non-skeletal tissues but has been studied most extensively in rat and bovine liver. Early studies of the enzyme utilized bound precursors of vitamin K-dependent clotting factors as substrates for the enzyme and demonstrated that the enzyme requires the reduced form of vitamin K (vitamin KH2), O2, and CO2. Subsequent investigations have taken advantage of the observation that the enzyme will carboxylate low-molecular-weight peptide substrates with Glu-Glu sequences. Utilizing a substrate such as Phe-Leu-Glu-Glu-Leu, it has been possible to demonstrate that γ-C-H release from the Glu residue of a substrate is independent of CO2 concentration. The formation of vitamin K 2,3-epoxide can also be demonstrated in a crude microsomal system, and it can be shown that the formation of this metabolite can be stimulated by the presence of a peptide substrate of the carboxylase. These observations have led to the general hypothesis that the mechanism of action of the enzyme involves interaction of vitamin KH2 with O2 to form an oxygenated intermediate that can interact with a substrate Glu residue to abstract a γ-hydrogen and in the process he converted to vitamin K epoxide (KO). The current evidence suggests that, either directly or indirectly, removal of the γ-C-H results in the formation of a carbanion at the γ-position of the Glu residue which can interact with CO2 to form Gla. The Glu residue intermediate which is formed can be demonstrated to partition between accepting a proton in the media to reform Glu, or interacting with CO2 to form Gla. Current data do not distinguish between the direct formation of a carbanion coupled to proton removal, or the participation of a reduced intermediate. Recent studies have demonstrated that the enzyme will carry out a partial reaction, the formation of vitamin K epoxide, at a decreased rate in the absence of a Glu site substrate. Epoxide formation under these conditions has the same for O2 as the carboxylation reaction and is inhibited in the same manner as the carboxylation reaction. In the presence of saturating concentrations of a Glu site substrate and C02, the ratio of KO formed, γ-C-H released, and C02 formed is 1:1:1. However, KO formation can be uncoupled from and proceeds at a higher rate than γ-C-H bond cleavage and Gla formation at low Glu site substrate concentrations. At saturating concentrations of CO2, Gla formation is equivalent to γ-C-H bond cleavage, and this unity is not altered by variations in vitamin KH2 or peptide substrate concentrations. Natural compounds with vitamin K activity are 2-Me-l,4-naphthoquinones with a polyprenyl side chain at the 3-position. Studies of vitamin K analogs have demonstrated that a 2-Me group is essential for activity but that the group at the 3-position can vary significantly. Modification of the aromatic ring of the naphthoquinone nucleus by methyl group substitution can result in alterations of either the rate of the carboxylation reaction or the apparent affinity of the enzyme for the vitamin. Studies of a large number of peptide substrates have failed to reveal any unique primary amino acid sequence which is a signal for carboxylation. However, current evidence from a number of sources suggests that a basic amino acid rich "propeptide" region of the intracellular form of the vitamin K-dependent proteins is an essential recognition site for the enzyme. This region of the precursor is lost in subsequent processing, and the manner in which it directs this posttranslational event is not yet clarified. Supported by NIH grant AM-14881.


2001 ◽  
Vol 82 (12) ◽  
pp. 3115-3117 ◽  
Author(s):  
Hara Kang ◽  
Yong Jae Lee ◽  
Jae Hwan Goo ◽  
Woo Jin Park

The RNA genome of turnip mosaic potyvirus (TuMV) encodes a large polyprotein that is processed to mature proteins by virus-encoded proteases. The TuMV NIa protease is responsible for the cleavage of the polyprotein at seven different locations. These cleavage sites are defined by a conserved sequence motif Val-Xaa-His-Gln↓, with the scissile bond located after Gln. To determine the substrate specificity of the NIa protease, amino acid sequences cleaved by the NIa protease were obtained from randomized sequence libraries using a screening method referred to as GASP (genetic assay for site-specific proteolysis). Based on statistical analysis of the obtained sequences, a consensus substrate sequence was deduced: Yaa-Val-Arg-His-Gln↓Ser, with Yaa being an aliphatic amino acid and the scissile bond being located between Gln and Ser. This result is consistent with the conserved cleavage sequence motif, and should provide insight into the molecular activity of the NIa protease.


2017 ◽  
Vol 117 (09) ◽  
pp. 1750-1760 ◽  
Author(s):  
Emrah Kara ◽  
Dipankar Manna ◽  
Åge Løset ◽  
Eric L. Schneider ◽  
Charles S. Craik ◽  
...  

SummaryFactor VII (FVII) activating protease (FSAP) is a circulating serine protease that is likely to be involved in a number of disease conditions such as stroke, atherosclerosis, liver fibrosis, thrombosis and cancer. To date, no systematic information is available about the substrate specificity of FSAP. Applying phage display and positional scanning substrate combinatorial library (PS-SCL) approaches we have characterised the specificity of FSAP towards small peptides. Results were evaluated in the context of known protein substrates as well as molecular modelling of the peptides in the active site of FSAP. The representative FSAP-cleaved sequence obtained from the phage display method was Val-Leu-Lys-Arg-Ser (P4-P1’). The sequence X-Lys/Arg-Nle-Lys/Arg (P4-P1) was derived from the PS-SCL method. These results show a predilection for cleavage at a cluster of basic amino acids on the nonprime side. Quenched fluorescent substrate (Ala-Lys-Nle-Arg-AMC) (amino methyl coumarin) and (Ala-Leu-Lys-Arg-AMC) had a higher selectivity for FSAP compared to other proteases from the hemostasis system. These substrates could be used to measure FSAP activity in a complex biological system such as plasma. In histonetreated plasma there was a specific activation of pro-FSAP as validated by the use of an FSAP inhibitory antibody, corn trypsin inhibitor to inhibit Factor XIIa and hirudin to inhibit thrombin, which may account for some of the haemostasis-related effects of histones. These results will aid the development of further selective FSAP activity probes as well as specific inhibitors that will help to increase the understanding of the functions of FSAP in vivo.Supplementary Material to this article is available online at www.thrombosis-online.com.


2006 ◽  
Vol 189 (2) ◽  
pp. 522-530 ◽  
Author(s):  
Bum-Yeol Hwang ◽  
Navin Varadarajan ◽  
Haixin Li ◽  
Sarah Rodriguez ◽  
Brent L. Iverson ◽  
...  

ABSTRACT Escherichia coli OmpP is an F episome-encoded outer membrane protease that exhibits 71% amino acid sequence identity with OmpT. These two enzymes cleave substrate polypeptides primarily between pairs of basic amino acids. We found that, like OmpT, purified OmpP is active only in the presence of lipopolysaccharide. With optimal peptide substrates, OmpP exhibits high catalytic efficiency (k cat/Km = 3.0 × 106 M−1s−1). Analysis of the extended amino acid specificity of OmpP by substrate phage revealed that both Arg and Lys are strongly preferred at the P1 and P1′ sites of the enzyme. In addition, Thr, Arg, or Ala is preferred at P2; Leu, Ala, or Glu is preferred at P4; and Arg is preferred at P3′. Notable differences in OmpP and OmpT specificities include the greater ability of OmpP to accept Lys at the P1 or P1′, site as well as the prominence of Ser at P3 in OmpP substrates. Likewise, the OmpP P1 site could better accommodate Ser; as a result, OmpP was able to cleave a peptide substrate between Ser-Arg about 120 times more efficiently than was OmpT. Interestingly, OmpP and OmpT cleave peptides with three consecutive Arg residues at different sites, a difference in specificity that might be important in the inactivation of cationic antimicrobial peptides. Accordingly, we show that the presence of an F′ episome results in increased resistance to the antimicrobial peptide protamine both in ompT mutants and in wild-type E. coli cells.


Sign in / Sign up

Export Citation Format

Share Document