scholarly journals Disruption of hepatic small heterodimer partner induces dissociation of steatosis and inflammation in experimental nonalcoholic steatohepatitis

2019 ◽  
Vol 295 (4) ◽  
pp. 994-1008 ◽  
Author(s):  
Nancy Magee ◽  
An Zou ◽  
Priyanka Ghosh ◽  
Forkan Ahamed ◽  
Don Delker ◽  
...  

Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide and is characterized by steatosis, inflammation, and fibrosis. The molecular mechanisms underlying NASH development remain obscure. The nuclear receptor small heterodimer partner (Shp) plays a complex role in lipid metabolism and inflammation. Here, we sought to determine SHP's role in regulating steatosis and inflammation in NASH. Shp deletion in murine hepatocytes (ShpHep−/−) resulted in massive infiltration of macrophages and CD4+ T cells in the liver. ShpHep−/− mice developed reduced steatosis, but surprisingly increased hepatic inflammation and fibrosis after being fed a high-fat, -cholesterol, and -fructose (HFCF) diet. RNA-Seq analysis revealed that pathways involved in inflammation and fibrosis are significantly activated in the liver of ShpHep−/− mice fed a chow diet. After having been fed the HFCF diet, WT mice displayed up-regulated peroxisome proliferator-activated receptor γ (Pparg) signaling in the liver; however, this response was completely abolished in the ShpHep−/− mice. In contrast, livers of ShpHep−/− mice had consistent NF-κB activation. To further characterize the role of Shp specifically in the transition of steatosis to NASH, mice were fed the HFCF diet for 4 weeks, followed by Shp deletion. Surprisingly, Shp deletion after steatosis development exacerbated hepatic inflammation and fibrosis without affecting liver steatosis. Together, our results indicate that, depending on NASH stage, hepatic Shp plays an opposing role in steatosis and inflammation. Mechanistically, Shp deletion in hepatocytes activated NF-κB and impaired Pparg activation, leading to the dissociation of steatosis, inflammation, and fibrosis in NASH development.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2623
Author(s):  
Giuseppina Augimeri ◽  
Cinzia Giordano ◽  
Luca Gelsomino ◽  
Pierluigi Plastina ◽  
Ines Barone ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARγ), belonging to the nuclear receptor superfamily, is a ligand-dependent transcription factor involved in a variety of pathophysiological conditions such as inflammation, metabolic disorders, cardiovascular disease, and cancers. In this latter context, PPARγ is expressed in many tumors including breast cancer, and its function upon binding of ligands has been linked to the tumor development, progression, and metastasis. Over the last decade, much research has focused on the potential of natural agonists for PPARγ including fatty acids and prostanoids that act as weak ligands compared to the strong and synthetic PPARγ agonists such as thiazolidinedione drugs. Both natural and synthetic compounds have been implicated in the negative regulation of breast cancer growth and progression. The aim of the present review is to summarize the role of PPARγ activation in breast cancer focusing on the underlying cellular and molecular mechanisms involved in the regulation of cell proliferation, cell cycle, and cell death, in the modulation of motility and invasion as well as in the cross-talk with other different signaling pathways. Besides, we also provide an overview of the in vivo breast cancer models and clinical studies. The therapeutic effects of natural and synthetic PPARγ ligands, as antineoplastic agents, represent a fascinating and clinically a potential translatable area of research with regards to the battle against cancer.


2018 ◽  
Vol 38 (03) ◽  
pp. 193-214 ◽  
Author(s):  
Louise Alferink ◽  
Jessica Kiefte-de Jong ◽  
Sarwa Darwish Murad

AbstractCoffee, the most consumed hot beverage worldwide, is composed of many substances, of which polyphenols, caffeine, and diterpenoids are well studied. Evidence on potential effects of coffee on human health has been accumulating over the past decades. Specifically, coffee has been postulated to be hepatoprotective in several epidemiological and clinical studies. Several underlying molecular mechanisms as to why coffee influences liver health have been proposed. In this review, the authors summarized the evidence on potential mechanisms by which coffee affects liver steatosis, fibrosis, and hepatic carcinogenesis. The experimental models reviewed almost unanimously supported the theorem that coffee indeed may benefit the liver. Either whole coffee or its specific compounds appeared to decrease fatty acid synthesis (involved in steatogenesis), hepatic stellate activation (involved in fibrogenesis), and hepatic inflammation. Moreover, coffee was found to induce apoptosis and increased hepatic antioxidant capacity, which are involved in carcinogenesis.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangbing Shu ◽  
Miao Wang ◽  
Hanchen Xu ◽  
Yang Liu ◽  
Jie Huang ◽  
...  

Nonalcoholic steatohepatitis (NASH) is featured by the presence of hepatic steatosis combined with inflammation and hepatocellular injury. Gut-derived endotoxin plays a crucial role in the pathogenesis of NASH. Salvia-Nelumbinis naturalis (SNN), a formula of Traditional Chinese Medicine, has been identified to be effective for NASH, but the mechanisms were not thoroughly explored. In the present study, a NASH model was generated using C57BL/6 mice fed a high fat diet (HFD) supplemented periodically with dextran sulfate sodium (DSS) in drinking water for 12 weeks. Mice fed HFD alone (without DSS) or chow diet were used as controls. The NASH mice were given the SNN extracts in the following 4 weeks, while control mice were provided with saline. Mice fed HFD developed steatosis, and DSS supplementation resulted in NASH. The SNN extracts significantly improved metabolic disorders including obesity, dyslipidemia, and liver steatosis and reduced hepatic inflammation, circulating tumor necrosis factor-α (TNF-α), and lipopolysaccharide (LPS) levels. The beneficial effect of the SNN extracts was associated with restoration of intestinal conditions (microbiota, integrity of intestinal barrier) and inhibition of TLR4/NF-κB activation. These results suggest that the SNN extracts ameliorate NASH progression, possibly through blocking endotoxin related TLR4/NF-κB activation.


2017 ◽  
Vol 67 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Xin Sun ◽  
Yan Zhang ◽  
Meilin Xie

AbstractNon-alcoholic fatty liver disease (NAFLD) has been defined as a spectrum of histological abnormalities and is characterized by significant and excessive accumulation of triglycerides in the hepatocytes in patients without alcohol consumption or other diseases. Current studies are targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. Many therapeutic targets have been found and used in clinical studies. Peroxisome proliferator-activated receptors (PPARs) are among the potential targets and have been demonstrated to exert a pivotal role in modulation of NAFLD. Many drugs developed so far are targeted at PPARs. Thus, the aim of this paper is to summarize the roles of PPARs in the treatment of NAFLD.


PPAR Research ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Huang-Jun Liu ◽  
Hai-Han Liao ◽  
Zheng Yang ◽  
Qi-Zhu Tang

Peroxisome proliferator-activated receptor-γ(PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγagonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγin various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγagonists for the clinical management of CVD.


2020 ◽  
Vol 21 (7) ◽  
pp. 2296
Author(s):  
Kyeongjin Kim ◽  
Kook Hwan Kim

Nonalcoholic steatohepatitis (NASH) is defined as a progressive form of nonalcoholic fatty liver disease (NAFLD) and is a common chronic liver disease that causes significant worldwide morbidity and mortality, and has no approved pharmacotherapy. Nevertheless, growing understanding of the molecular mechanisms underlying the development and progression of NASH has suggested multiple potential therapeutic targets and strategies to treat this disease. Here, we review this progress, with emphasis on the functional role of secretory proteins in the development and progression of NASH, in addition to the change of expression of various secretory proteins in mouse NASH models and human NASH subjects. We also highlight secretory protein-based therapeutic approaches that influence obesity-associated insulin resistance, liver steatosis, inflammation, and fibrosis, as well as the gut–liver and adipose–liver axes in the treatment of NASH.


2021 ◽  
Vol 128 (7) ◽  
pp. 1021-1039 ◽  
Author(s):  
Shi Fang ◽  
M. Christine Livergood ◽  
Pablo Nakagawa ◽  
Jing Wu ◽  
Curt D. Sigmund

Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.


Sign in / Sign up

Export Citation Format

Share Document