scholarly journals Small molecule control of neurotransmitter sulfonation

2020 ◽  
pp. jbc.RA120.015177
Author(s):  
Ian Cook ◽  
Mary Cacace ◽  
Ting Wang ◽  
Kristie Darrah ◽  
Alexander Deiters ◽  
...  

Controlling unmodified serotonin levels in brain synapses is a primary objective when treating major depressive disorder — a disease that afflicts ~20% of the world’s population. Roughly 60% of patients respond poorly to first-line treatments and thus new therapeutic strategies are sought. Toward this end, we have constructed isoform-specific inhibitors of the human cytosolic sulfotransferase 1A3 (SULT1A3) — the isoform responsible for sulfonating ~80% of the serotonin in extracellular brain fluid. The inhibitor design includes a core ring structure, which anchors the inhibitor into a SULT1A3-specific binding pocket located outside the active site, and a sidechain crafted to act as a latch to inhibit turnover by fastening down the SULT1A3 active-site cap. The inhibitors are allosteric, they bind with nanomolar affinity and are highly specific for the 1A3 isoform. The cap-stabilizing effects of the latch can be accurately calculated and are predicted to extend throughout the cap and into the surrounding protein. A free energy correlation demonstrates that the percent inhibition at saturating inhibitor varies linearly with cap stabilization — the correlation is linear because the rate-limiting step of the catalytic cycle, nucleotide release, scales linearly with the fraction of enzyme in the cap-open form. Inhibitor efficacy in cultured cells was studied using a human mammary epithelial cell line that expresses SULT1A3 at levels comparable to those found in neurons. The inhibitors perform similarly in ex vivo and in vitro studies; consequently, SULT1A3 turnover can now be potently suppressed in an isoform-specific manner in human cells.

2021 ◽  
Vol 22 (5) ◽  
pp. 2731
Author(s):  
Piotr Garnuszek ◽  
Urszula Karczmarczyk ◽  
Michał Maurin ◽  
Arkadiusz Sikora ◽  
Jolanta Zaborniak ◽  
...  

A new PSMA ligand (PSMA-D4) containing the Glu-CO-Lys pharmacophore connected with a new linker system (L-Trp-4-Amc) and chelator DOTA was developed for radiolabeling with therapeutic radionuclides. Herein we describe the synthesis, radiolabeling, and preliminary biological evaluation of the novel PSMA-D4 ligand. Synthesized PSMA-D4 was characterized using TOF-ESI-MS, NMR, and HPLC methods. The novel compound was subject to molecular modeling with GCP-II to compare its binding mode to analogous reference compounds. The radiolabeling efficiency of PSMA-D4 with 177Lu, 90Y, 47Sc, and 225Ac was chromatographically tested. In vitro studies were carried out in PSMA-positive LNCaP tumor cells membranes. The ex vivo tissue distribution profile of the radioligands and Cerenkov luminescence imaging (CLI) was studied in LNCaP tumor-bearing mice. PSMA-D4 was synthesized in 24% yield and purity >97%. The radio complexes were obtained with high yields (>97%) and molar activity ranging from 0.11 to 17.2 GBq mcmol−1, depending on the radionuclide. In vitro assays confirmed high specific binding and affinity for all radiocomplexes. Biodistribution and imaging studies revealed high accumulation in LNCaP tumor xenografts and rapid clearance of radiocomplexes from blood and non-target tissues. These render PSMA-D4 a promising ligand for targeted therapy of prostate cancer (PCa) metastases.


1992 ◽  
Vol 101 (2) ◽  
pp. 315-322 ◽  
Author(s):  
M. Terasaki ◽  
T.S. Reese

The original concept of endoplasmic reticulum derived from the observation of a reticular network in cultured fibroblasts by electron microscopy of whole cells. It was previously reported that the fluorescent dye, DiOC6(3), stains a similar network as well as mitochondria and other organelles in living cells. Here, we investigate the significance of the structures labeled by DiO6(3) in CV-1 cells, a monkey epithelial cell line. First, we show that the network stained in living CV-1 cells is preserved by glutaraldehyde fixation and then we co-label it with an antibody against BiP (immunoglobulin binding protein), a protein commonly accepted to be present in the endoplasmic reticulum. Anti-BiP labeled the same network as that labeled by DiOC6(3), so this network now is identified as being part of the endoplasmic reticulum. DiOC6(3) labels many other membrane compartments in addition to the endoplasmic reticulum. This, along with its lipophilic properties, suggests that DiOC6(3) stains all intracellular membranes. However, the extensive reticular network in the thin peripheral regions of cultured cells is easily distinguished from these other membranes. Thus, staining by DiOC6(3) is a useful method for localizing the endoplasmic reticulum, particularly in thin peripheral regions of cultured cells.


2020 ◽  
Vol 295 (11) ◽  
pp. 3563-3575 ◽  
Author(s):  
Zachary Hartman ◽  
Werner J. Geldenhuys ◽  
Yehenew M. Agazie

The Src homology phosphatase 2 (SHP2) is a cytoplasmic enzyme that mediates signaling induced by multiple receptor tyrosine kinases, including signaling by the epidermal growth factor receptor (EGFR) family (EGFR1–4 or the human homologs HER1–4). In EGFR (HER1) and EGFR2 (HER2) signaling, SHP2 increases the half-life of activated Ras by blocking recruitment of Ras GTPase-activating protein (RasGAP) to the plasma membrane through dephosphorylation of docking sites on the receptors. However, it is unclear how SHP2 selectively recognizes RasGAP-binding sites on EGFR and HER2. In this report, we show that SHP2-targeted pTyr residues exist in a specific amino acid context that allows selective binding. More specifically, we show that acidic residues N-terminal to the substrate pTyr in EGFR and HER2 mediate specific binding by the SHP2 active site, leading to blockade of RasGAP binding and optimal signaling by the two receptors. Molecular modeling studies revealed that a peptide derived from the region of pTyr992-EGFR packs well and makes stronger interactions with the SHP2 active site than with the SHP1 active site, suggesting a built-in mechanism that enables selective substrate recognition by SHP2. A phosphorylated form of this peptide inhibits SHP2 activity in vitro and EGFR and HER2 signaling in cells, suggesting inhibition of SHP2 protein tyrosine phosphatase activity by this peptide. Although we do not expect this peptide to be a strong inhibitor by itself, we foresee that the insights into SHP2 selectivity described here will be useful in future development of active-site small molecule-based inhibitors.


2020 ◽  
Vol 11 ◽  
Author(s):  
Balamurugan Shanmugaraj ◽  
Kaewta Rattanapisit ◽  
Suwimon Manopwisedjaroen ◽  
Arunee Thitithanyanont ◽  
Waranyoo Phoolcharoen

The ongoing coronavirus disease 2019 (COVID-19) outbreak caused by novel zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially reported in Wuhan city, Hubei Province of China, in late December 2019. The rapid global spread of the virus calls for the urgent development of vaccines or therapeutics for human applications to combat the coronavirus infection. Monoclonal antibodies (mAbs) have been utilized as effective therapeutics for treating various infectious diseases. In the present study, we evaluated the feasibility of plant expression system for the rapid production of recently identified therapeutically suitable human anti-SARS-CoV-2 mAbs B38 and H4. Transient co-expression of heavy-chain and light-chain sequences of both the antibodies by using plant expression geminiviral vector resulted in rapid accumulation of assembled mAbs in Nicotiana benthamiana leaves within 4 days post-infiltration. Furthermore, both the mAbs were purified from the plant crude extracts with single-step protein A affinity column chromatography. The expression level of mAb B38 and H4 was estimated to be 4 and 35 μg/g leaf fresh weight, respectively. Both plant-produced mAbs demonstrated specific binding to receptor binding domain (RBD) of SARS-CoV-2 and exhibited efficient virus neutralization activity in vitro. To the best of our knowledge, this is the first report of functional anti-SARS-CoV-2 mAbs produced in plants, which demonstrates the ability of using a plant expression system as a suitable platform for the production of effective, safe, and affordable SARS-CoV-2 mAbs to fight against the spread of this highly infectious pathogen.


1998 ◽  
Vol 143 (7) ◽  
pp. 1813-1830 ◽  
Author(s):  
Marcello Marelli ◽  
John D. Aitchison ◽  
Richard W. Wozniak

We have identified a specific karyopherin docking complex within the yeast nuclear pore complex (NPC) that contains two novel, structurally related nucleoporins, Nup53p and Nup59p, and the NPC core protein Nup170p. This complex was affinity purified from cells expressing a functional Nup53p–protein A chimera. The localization of Nup53p, Nup59p, and Nup170p within the NPC by immunoelectron microscopy suggests that the Nup53p-containing complex is positioned on both the cytoplasmic and nucleoplasmic faces of the NPC core. In association with the isolated complex, we have also identified the nuclear transport factor Kap121p (Pse1p). Using in vitro binding assays, we showed that each of the nucleoporins interacts with one another. However, the association of Kap121p with the complex is mediated by its interaction with Nup53p. Moreover, Kap121p is the only β-type karyopherin that binds Nup53p suggesting that Nup53p acts as a specific Kap121p docking site. Kap121p can be released from Nup53p by the GTP bound form of the small GTPase Ran. The physiological relevance of the interaction between Nup53p and Kap121p was further underscored by the observation that NUP53 mutations alter the subcellular distribution of Kap121p and the Kap121p- mediated import of a ribosomal L25 reporter protein. Interestingly, Nup53p is specifically phosphorylated during mitosis. This phenomenon is correlated with a transient decrease in perinuclear-associated Kap121p.


1984 ◽  
Vol 7 (1) ◽  
pp. 23-26 ◽  
Author(s):  
L. Håkansson ◽  
J. Hed ◽  
L. Baldetorp ◽  
S. Eneström ◽  
S. Jonsson ◽  
...  

Circulating immune complexes (CIC) were determined in tumour patient sera using three methods. One is based on PEG-precipitation, one on C1q-reactivity, and one on protein A-reactivity. About 25-30% of the sera were positive in at least one of the tests. Incubation of serum with protein A-Sepharose in vitro removed PEG-precipitable CIC from most sera, whereas C1q-reactive CICs had a much lower affinity to protein A. The protein A-reactive complexes showed considerable variation in their binding to protein A-Sepharose, and in some sera the amount of these CICs was actually increased. Similar changes in protein A-reactive CIC were also found during ex vivo treatment of tumour patients with immune adsorption. It is proposed that the binding of immune complexes to protein A can result in remodelling of protein A itself. Results from ultracentrifugation and fractionated PEG-precipitation support this hypothesis.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Abstract Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1351-1351
Author(s):  
Suzan Imren ◽  
Guy Sauvageau ◽  
Connie J. Eaves ◽  
R. Keith Humphries

Abstract Expanding human hematopoietic stem cells (HSCs) in vitro is a major goal in clinical hematology but remains a major challenge due to the potent differentiating activity of known cytokines. We recently demonstrated that a NUP98-HOX fusion gene containing only the homeodomain (hd) of HOXA10 (NUP98-HOXA10hd) is a powerful stimulator of murine HSC expansion in vitro - causing >1000-fold net HSC increases in 10 days (Sekulovic et al, ISEH 2005). To investigate the proliferative effect of NUP98-HOXA10hd on primitive human hematopoietic cells, highly enriched CD34+ cord blood cells were prestimulated overnight and exposed to self-inactivating MNDUSNUP98-HOXA10hd pgkGFP or control pgkGFP lentiviruses for 6h. The gene transfer efficiency into CD34+ cells determined 4 days after infection was 56 ± 5% for NUP98-HOXA10hd and 66 ± 5% for the GFP control. GFP+ cells were sorted on day 5 and then maintained for another 5 days in serum-free cultures containing Flt3-ligand, Steel factor, IL-3, IL-6 and G-CSF. An aliquot of each was then plated into “primary” colony-forming cell (CFC) assay cultures. No difference was detected in either the numbers or the types of colonies generated in these primary CFC assays of the 10-day cultured cells from the NUP98-HOXA10hd and control arms. However, when these primary CFC assays were replated into secondary CFC assays, the number of colonies obtained from the NUP98-HOXA10hd-transduced cells was 5-fold higher as compared to the GFP-control transduced cells and, upon replating into tertiary CFC assays, this difference increased to over a 100-fold. To determine the effect of NUP98-HOXA10hd on more primitive hematopoietic cells, 104 day-10 GFP+ cells were co-cultured on mouse fibroblast feeders engineered to produce human SF, IL-3 and G-SCF. At the end of 6 weeks, 13-fold more cells were recovered from the cultures initiated with NUP98-HOXA10hd-transduced cells than from the control cultures (474,000 ± 190,000 vs 37,000 ± 16,000, 3 experiments). CFC outputs were also greatly enhanced (21-fold more CFC than in the controls cultures, range=20–80, 3 experiments). Moreover, the proportion of progenitors in the assays of the cultures initiated with NUP98-HOXA10hd cells that were multi-lineage (CFU-GEMM) was >10-fold higher as compared to the CFCs obtained from the control cultures (8 ± 3% vs 0.7 ± 0.7%). When this experiment was repeated using limiting dilutions of initial day-10 cells, the frequency of NUP98-HOXA10hd-transduced cells able to generate CFCs another 6 weeks later was 10-fold higher as compared to the day-10 GFP control-transduced cells. These findings document an unprecedented potency of NUP98-HOXA10hd for stimulating the ex-vivo expansion of very primitive pluripotent human hematopoietic cells.


2003 ◽  
Vol 185 (6) ◽  
pp. 1808-1816 ◽  
Author(s):  
Victor McAlister ◽  
Chao Zou ◽  
Robert H. Winslow ◽  
Gail E. Christie

ABSTRACT NucC is structurally and functionally homologous to a family of prokaryotic zinc finger transcription factors required for late gene expression in P2- and P4-related bacteriophages. Characterization of these proteins in vitro has been hampered by their relative insolubility and tendency to aggregate. We report here the successful purification of soluble, active, wild-type NucC protein. Purified NucC exhibits site-specific binding to a conserved DNA sequence that is located upstream of NucC-dependent Serratia marcescens promoters and the late promoters of P2-related phages. This sequence is sufficient for binding of NucC in vitro. NucC binding to the S. marcescens nuclease promoter P nucA and to the sequence upstream of the P2 late promoter P F is accompanied by DNA bending. NucC protects about 25 nucleotides of the P F upstream region from DNase I digestion, and RNA polymerase protects the promoter region only in the presence of NucC. Template DNA, RNA polymerase holoenzyme, and purified NucC are the only macromolecular components required for transcription from P F in vitro.


2015 ◽  
Vol 112 (20) ◽  
pp. 6347-6352 ◽  
Author(s):  
Bradley M. Hover ◽  
Nam K. Tonthat ◽  
Maria A. Schumacher ◽  
Kenichi Yokoyama

The molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During Moco biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5′-triphosphate (GTP) into cyclic pyranopterin (cPMP) through the action of two enzymes, MoaA and MoaC (molybdenum cofactor biosynthesis protein A and C, respectively). Conventionally, MoaA was considered to catalyze the majority of this transformation, with MoaC playing little or no role in the pyranopterin formation. Recently, this view was challenged by the isolation of 3′,8-cyclo-7,8-dihydro-guanosine 5′-triphosphate (3′,8-cH2GTP) as the product of in vitro MoaA reactions. To elucidate the mechanism of formation of Moco pyranopterin backbone, we performed biochemical characterization of 3′,8-cH2GTP and functional and X-ray crystallographic characterizations of MoaC. These studies revealed that 3′,8-cH2GTP is the only product of MoaA that can be converted to cPMP by MoaC. Our structural studies captured the specific binding of 3′,8-cH2GTP in the active site of MoaC. These observations provided strong evidence that the physiological function of MoaA is the conversion of GTP to 3′,8-cH2GTP (GTP 3′,8-cyclase), and that of MoaC is to catalyze the rearrangement of 3′,8-cH2GTP into cPMP (cPMP synthase). Furthermore, our structure-guided studies suggest that MoaC catalysis involves the dynamic motions of enzyme active-site loops as a way to control the timing of interaction between the reaction intermediates and catalytically essential amino acid residues. Thus, these results reveal the previously unidentified mechanism behind Moco biosynthesis and provide mechanistic and structural insights into how enzymes catalyze complex rearrangement reactions.


Sign in / Sign up

Export Citation Format

Share Document