scholarly journals Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl-enzyme conformational dynamics to extend antibiotic resistance

2020 ◽  
pp. jbc.RA120.016461
Author(s):  
Catherine L. Tooke ◽  
Philip Hinchliffe ◽  
Robert A. Bonomo ◽  
Christopher J. Schofield ◽  
Adrian J. Mulholland ◽  
...  

Class A serine β-lactamases (SBLs) are key antibiotic resistance determinants in Gram-negative bacteria. SBLs neutralize β-lactams via a hydrolytically labile covalent acyl-enzyme intermediate. Klebsiella pneumoniae carbapenemase (KPC) is a widespread SBL that hydrolyzes carbapenems, the most potent β-lactams; known KPC variants differ in turnover of expanded-spectrum oxyimino-cephalosporins (ESOCs), e.g. cefotaxime and ceftazidime. Here, we compare ESOC hydrolysis by the parent enzyme KPC-2 and its clinically observed double variant (P104R/V240G) KPC-4. Kinetic analyses show KPC-2 hydrolyzes cefotaxime more efficiently than the bulkier ceftazidime, with improved ESOC turnover by KPC-4 resulting from enhanced turnover (kcat), rather than binding (KM). High-resolution crystal structures of ESOC acyl-enzyme complexes with deacylation-deficient (E166Q) KPC-2 and KPC-4 mutants show that ceftazidime acylation causes rearrangement of three loops; the Ω-, 240- and 270-loops, that border the active site. However, these rearrangements are less pronounced in the KPC-4 than the KPC-2 ceftazidime acyl-enzyme, and are not observed in the KPC-2:cefotaxime acyl-enzyme. Molecular dynamics simulations of KPC:ceftazidime acyl-enyzmes reveal that the deacylation general base E166, located on the Ω-loop, adopts two distinct conformations in KPC-2, either pointing ‘in’ or ‘out’ of the active site; with only the ‘in’ form compatible with deacylation. The ‘out’ conformation was not sampled in the KPC-4 acyl-enzyme, indicating that efficient ESOC breakdown is dependent upon the ordering and conformation of the KPC Ω-loop. The results explain how point mutations expand the activity spectrum of the clinically important KPC SBLs to include ESOCs through their effects on the conformational dynamics of the acyl-enzyme intermediate.

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Melissa D. Barnes ◽  
Marisa L. Winkler ◽  
Magdalena A. Taracila ◽  
Malcolm G. Page ◽  
Eric Desarbre ◽  
...  

ABSTRACT The emergence of Klebsiella pneumoniae carbapenemases (KPCs), β-lactamases that inactivate “last-line” antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ) and avibactam (AVI), a potent β-lactamase inhibitor, represents an attempt to overcome this formidable threat and to restore the efficacy of the antibiotic against Gram-negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC variants with substitutions in the Ω-loop are emerging. We engineered 19 KPC-2 variants bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli and identified a unique antibiotic resistance phenotype. We focus particularly on the CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant demonstrated less hydrolytic activity, we demonstrated that there was a prolonged period during which an acyl-enzyme intermediate was present. Using mass spectrometry and transient kinetic analysis, we demonstrated that Asp179Asn “traps” β-lactams, preferentially binding β-lactams longer than AVI owing to a decreased rate of deacylation. Molecular dynamics simulations predict that (i) the Asp179Asn variant confers more flexibility to the Ω-loop and expands the active site significantly; (ii) the catalytic nucleophile, S70, is shifted more than 1.5 Å and rotated more than 90°, altering the hydrogen bond networks; and (iii) E166 is displaced by 2 Å when complexed with ceftazidime. These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI resistance. The future design of novel β-lactams and β-lactamase inhibitors must consider the mechanistic basis of resistance of this and other threatening carbapenemases. IMPORTANCE Antibiotic resistance is emerging at unprecedented rates and threatens to reach crisis levels. One key mechanism of resistance is the breakdown of β-lactam antibiotics by β-lactamase enzymes. KPC-2 is a β-lactamase that inactivates carbapenems and β-lactamase inhibitors (e.g., clavulanate) and is prevalent around the world, including in the United States. Resistance to the new antibiotic ceftazidime-avibactam, which was designed to overcome KPC resistance, had already emerged within a year. Using protein engineering, we uncovered a mechanism by which resistance to this new drug emerges, which could arm scientists with the ability to forestall such resistance to future drugs.


2021 ◽  
Vol 22 (9) ◽  
pp. 4769
Author(s):  
Pablo Maturana ◽  
María S. Orellana ◽  
Sixto M. Herrera ◽  
Ignacio Martínez ◽  
Maximiliano Figueroa ◽  
...  

Agmatine is the product of the decarboxylation of L-arginine by the enzyme arginine decarboxylase. This amine has been attributed to neurotransmitter functions, anticonvulsant, anti-neurotoxic, and antidepressant in mammals and is a potential therapeutic agent for diseases such as Alzheimer’s, Parkinson’s, and cancer. Agmatinase enzyme hydrolyze agmatine into urea and putrescine, which belong to one of the pathways producing polyamines, essential for cell proliferation. Agmatinase from Escherichia coli (EcAGM) has been widely studied and kinetically characterized, described as highly specific for agmatine. In this study, we analyze the amino acids involved in the high specificity of EcAGM, performing a series of mutations in two loops critical to the active-site entrance. Two structures in different space groups were solved by X-ray crystallography, one at low resolution (3.2 Å), including a guanidine group; and other at high resolution (1.8 Å) which presents urea and agmatine in the active site. These structures made it possible to understand the interface interactions between subunits that allow the hexameric state and postulate a catalytic mechanism according to the Mn2+ and urea/guanidine binding site. Molecular dynamics simulations evaluated the conformational dynamics of EcAGM and residues participating in non-binding interactions. Simulations showed the high dynamics of loops of the active site entrance and evidenced the relevance of Trp68, located in the adjacent subunit, to stabilize the amino group of agmatine by cation-pi interaction. These results allow to have a structural view of the best-kinetic characterized agmatinase in literature up to now.


Author(s):  
Rakesh K. R. Pandit ◽  
Dinesh Gupta ◽  
Tapan K. Mukherjee

Objective: The purpose of this study was to identify a potential peptidomimetic S. typhi Beta-lactamase TEM 1 inhibitor to tackle the antibiotic resistance among S. typhi.Methods: The potential peptidomimetic inhibitor was identified by in silico docking of the small peptide WFRKQLKW with S. typhi Beta-lactamase TEM 1. The 3D coordinate geometry of the residues of small peptide interacting with the active site of the receptor was generated and mimics were identified using PEP: MMs: MIMIC server. All the identified mimics were docked at the active site of the receptor using Autodock 4.2 and the best-docked complex was selected on the basis of binding energy and number of H-bonds. The complex was then subjected to molecular dynamics simulations of 30 ns using AMBER 12 software package. The stereochemical stability of the Beta-lactamase TEM 1-WFRKQLKW complex was estimated with the help of Ramachandran plot using PROCHECK tool.Results: In the present study, a new potential peptidomimetic inhibitor (ZINC05839264) of Beta-lactamase TEM 1 has been identified based on antimicrobial peptide WFRKQLKW by virtual screening of the MMsINC database. The docking and molecular simulation studies revealed that the mimic binds more tightly to the active site of the receptor than the peptide. The Ramachandran plot also shows that the Beta-lactamase TEM 1-mimic complex is stereo chemically more stable than Beta-lactamase TEM 1-WFRKQLKW complex as more number of residues (93.6%) are falling under the core region of the plot in case of the former.Conclusion: The study shows that the peptidomimetic compound can act as a potential inhibitor of S. typhi Beta-lactamase TEM 1 and further it can be developed into more effective therapeutic to tackle the problem of antibiotic resistance.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3220-3220
Author(s):  
Sara Redaelli ◽  
Rocco Piazza ◽  
Roberta Rostagno ◽  
Marianna Sassone ◽  
Vera Magistroni ◽  
...  

Abstract The treatment of Chronic Myeloid Leukemia (CML) has been radically modified by the discovery of imatinib (IM), a selective inhibitor of the fusion protein Bcr-Abl, the cause of the disease. A variable portion of CML patients experience resistance to IM therapy. Resistance can arise from different mechanisms but in the vast majority of cases is due to point mutations into the protein sequence that alter directly or indirectly the drug-protein binding. Mutation sites can be schematically clustered in four region: the P loop, the IM binding site, the catalytic domain and the activation loop (A loop). At present more than 70 mutations conferring different levels of resistance have been found in CML patients. Recently, several new inhibitors have been developed in order to obtain an increased potency and a broad range of activity against IM resistant mutants. Nilotinib (NIL) is an IM derivative about 30-fold more potent than IM. Dasatinib (DAS) is a dual-specific Src/Abl inhibitor, structurally unrelated to IM and characterized by an activity 100 to 300-fold higher than IM. Bosutinib (BOS) is a dual Src/Abl inhibitor that shows an activity 10 to 30-fold higher than IM. It is known that resistance to second generation TKIs can also arise and the analysis of mutation profiles reveals substantial differences among different TKIs. Presently the choice of a TKI to treat a patient resistant to IM is mostly based on an empirical basis, e.g. the fact that a certain patient has not been previously exposed to that particular TKI. The possibility to directly compare the different activities of TKIs against a given mutation is of remarkable importance in clinical practice. Such a tool could be used similarly to an antibiogram for bacterial diseases, guiding the choice of the most appropriate inhibitor for each patient. In our study, we investigated the activity of BOS, DAS, IM and NIL against a panel of 18 mutated forms of BCR/ABL chosen to cover the most common mutations found in patients. Stable Ba/F3 transfectant cell lines were generated and the TKIs antiproliferative activity was determined by tritiated thymidine incorporation assay. The relative IC50 increase over wild type BCR/ABL (Relative Resistance RR) was calculated. We classified the RR values in three categories: sensitive (RR≤2), resistant (between 2.01 and 10) or highly resistant (>10) as presented in the table. IC50-fold increase (WT=1) Imatinib Bosutinib Dasatinib Nilotinib Parental 10.78 38.31 >50 38.45 WT 1 1 1 1 P-LOOP L248V 3.54 2.97 5.11 2.80 G250E 6.86 4.31 4.45 4.56 Q252H 1.39 0.81 3.05 2.64 Y253F 3.58 0.96 1.58 3.23 E255K 6.02 9.47 5.61 6.69 E255V 16.99 5.53 3.44 10.31 D276G 2.18 0.60 1.44 2.00 C-Helix E279K 3.55 0.95 1.64 2.05 V299L 1.54 26.10 8.65 1.34 Active site T3151 17.50 45.42 75.03 39.41 F317L 2.60 2.42 4.46 2.22 SH2-contact M351T 1.76 0.70 0.88 0.44 Active site F359V 2.86 0.93 1.49 5.16 A-LOOP L384M 1.28 0.47 2.21 2.33 H396P 2.43 0.43 1.07 2.41 H396R 3.91 0.81 1.63 3.10 G398R 0.35 1.16 0.69 0.49 C terminal lobe F486S 8.10 2.31 3.04 1.85 Sensitive ≤2 Resistant 2.01–10 Highly resistant >10 (Updated table available online at http://www.dimep.medicina.unimib.it/en/staff_174.php?docente_id=32) Our study points out at the differences in the activity spectrum of the 4 TKIs against the 18 Bcr/Abl mutations considered. The activity pattern presented in this work will help to reach a rational and tailored therapy offering to physicians a tool to use the new TKIs in the most efficient way for their patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liang Xu ◽  
Liao Y. Chen

AbstractCytochrome P450 2J2 (CYP2J2) is responsible for the epoxidation of endogenous arachidonic acid, and is involved in the metabolism of exogenous drugs. To date, no crystal structure of CYP2J2 is available, and the proposed structural basis for the substrate recognition and specificity in CYP2J2 varies with the structural models developed using different computational protocols. In this study, we developed a new structural model of CYP2J2, and explored its sensitivity to substrate binding by molecular dynamics simulations of the interactions with chemically similar fluorescent probes. Our results showed that the induced-fit binding of these probes led to the preferred active poses ready for the catalysis by CYP2J2. Divergent conformational dynamics of CYP2J2 due to the binding of each probe were observed. However, a stable hydrophobic clamp composed of residues I127, F310, A311, V380, and I487 was identified to restrict any substrate access to the active site of CYP2J2. Molecular docking of a series of compounds including amiodarone, astemizole, danazol, ebastine, ketoconazole, terfenadine, terfenadone, and arachidonic acid to CYP2J2 confirmed the role of those residues in determining substrate binding and specificity of CYP2J2. In addition to the flexibility of CYP2J2, the present work also identified other factors such as electrostatic potential in the vicinity of the active site, and substrate strain energy and property that have implications for the interpretation of CYP2J2 metabolism.


2021 ◽  
Vol 22 (9) ◽  
pp. 4619
Author(s):  
Carlos A. Ramirez-Mondragon ◽  
Megin E. Nguyen ◽  
Jozafina Milicaj ◽  
Bakar A. Hassan ◽  
Frank J. Tucci ◽  
...  

It has long been understood that some proteins undergo conformational transitions en route to the Michaelis Complex to allow chemistry. Examination of crystal structures of glycosyltransferase enzymes in the GT-B structural class reveals that the presence of ligand in the active site triggers an open-to-closed conformation transition, necessary for their catalytic functions. Herein, we describe microsecond molecular dynamics simulations of two distantly related glycosyltransferases that are part of the GT-B structural superfamily, HepI and GtfA. Simulations were performed using the open and closed conformations of these unbound proteins, respectively, and we sought to identify the major dynamical modes and communication networks that interconnect the open and closed structures. We provide the first reported evidence within the scope of our simulation parameters that the interconversion between open and closed conformations is a hierarchical multistep process which can be a conserved feature of enzymes of the same structural superfamily. Each of these motions involves of a collection of smaller molecular reorientations distributed across both domains, highlighting the complexities of protein dynamic involved in the interconversion process. Additionally, dynamic cross-correlation analysis was employed to explore the potential effect of distal residues on the catalytic efficiency of HepI. Multiple distal nonionizable residues of the C-terminal domain exhibit motions anticorrelated to positively charged residues in the active site in the N-terminal domain involved in substrate binding. Mutations of these residues resulted in a reduction in negatively correlated motions and an altered enzymatic efficiency that is dominated by lower Km values with kcat effectively unchanged. The findings suggest that residues with opposing conformational motions involved in the opening and closing of the bidomain HepI protein can allosterically alter the population and conformation of the “closed” state, essential to the formation of the Michaelis complex. The stabilization effects of these mutations likely equally influence the energetics of both the ground state and the transition state of the catalytic reaction, leading to the unaltered kcat. Our study provides new insights into the role of conformational dynamics in glycosyltransferase’s function and new modality to modulate enzymatic efficiency.


2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Letícia Roloff Stallbaum ◽  
Beatriz Bohns Pruski ◽  
Suelen Cavalheiro Amaral ◽  
Stella Buchhorn de Freitas ◽  
Daniela Rodriguero Wozeak ◽  
...  

Introduction. A significant cause of mortality in the intensive care unit (ICU) is multidrug-resistant (MDR) Gram-negative bacteria, such as Klebsiella pneumoniae carbapenemase (KPC). Biofilm production is a key factor in KPC colonization and persistence in the host, making the treatment difficult. Gap Statement. The aim of this study was to evaluate the antibiotic resistance, molecular and phenotypic biofilm profiles of 12 KPC isolates associated with nosocomial infection in a hospital in Pelotas, Rio Grande do Sul, Brazil. Methodology. Clinical isolates were obtained from different sources, identified and characterized by antibiotic resistance and carbapenemase synthesis following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Polymerase chain reaction (PCR) was used to evaluate the presence of carbapenemase (blaKPC ) and biofilm formation-associated genes (fimA, fimH, rmpA, ecpA, mrkD and wabG). Additionally, phenotypic evaluation of in vitro biofilm formation capacity was evaluated by Congo red agar (CRA) assay and the crystal violet staining method. Results. The 12 isolates evaluated in this study presented the blaKPC gene and were positive for synthesizing carbapenemases in vitro. In the carbapenem class, 83.3 % isolates were resistant and 16.7 % intermediately resistant to imipenem and meropenem. Molecular analyses found that the fimA and wabG genes were detected in 75 % of isolates, while fimH and ecpA were detected in 42 % and mrkD were detected in 8.3 % (1). The CRA assay demonstrated that all isolates were slime producers and 91.7 % (11) of isolates were classified as strong and 8.3 % (1) as moderate biofilm producers by the crystal violet staining method. The optical density (OD540nm) for strong biofilm formers ranged from 0.80±0.05 to 2.47±0.28 and was 0.55±0.12 for moderate biofilm formers. Conclusion. Our study revealed a high level of antibiotic resistance and biofilm formation in KPC isolates obtained from a hospital in Pelotas, RS, Brazil.


Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


Sign in / Sign up

Export Citation Format

Share Document