Muscle development of livestock animals: physiology, genetics and meat quality

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Zhang ◽  
Jing Cao ◽  
Ailian Geng ◽  
Haihong Wang ◽  
Qin Chu ◽  
...  

Chronological age is one of the important factors influencing muscle development and meat quality in chickens. To evaluate the protein expression profiles during skeletal muscle development, we performed a tandem mass tag (TMT)-based quantitative proteomic strategy in pectoralis major (breast muscle) of Beijing-You chicken (BYC) at the chronological age of 90, 120, and 150 days. Each chronological age contained 3 pooling samples or 15 birds (five birds per pooling sample). A total of 1,413 proteins were identified in chicken breast muscle with FDR < 1% and 197 of them were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05). There were 110 up- and 71 down-regulated proteins in 120 d vs 90 d group, 13 up- and 10 down-regulated proteins in 150 d vs 120 d group. The proteomic profiles of BYC at 120 d were very similar to those at 150 d and highly different from those at 90 d, suggesting that 120 d might be an important chronological age for BYC. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these differentially expressed proteins were mainly involved in the pathway of glycolysis/gluconeogenesis, adrenergic signaling in cardiomyocytes, focal adhesion, oocyte meiosis and phagosome. Furthermore, some DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. In summary, these results provided some candidate protein-coding genes for further functional validation and contribute to a comprehensive understanding of muscle development and age-dependent meat quality regulation by proteins in chickens.


2003 ◽  
Vol 2003 ◽  
pp. 60-60
Author(s):  
A.J. Fahey ◽  
J.M. Brameld ◽  
T. Parr ◽  
P.J. Buttery

Muscle fibre type can influence meat quality (Maltinet al1997). Muscle fibre formation occurs during gestation and in the sheep the total number of fibres in a muscle is essentially fixed at birth. (Ashmereet al1972). Postnatal growth of muscle is entirely due to elongation and widening of the existing muscle fibres. Therefore the gestational period is important in the long-term growth potential of the animal. By investigating changes in muscle fibre type, the aim of this study was to test the general hypothesis that the poor carcass quality sometimes seen in ruminant animals may be due to poor nutrition at strategic time points during the animal’s development. As agricultural practices continue to become more extensive, variation in the nutrient supply to the animal is becoming more common. Therefore it is important to understand the effect of any changes in nutrient supply to the mother, during gestation on the subsequent muscle development of the fetus and ultimately the effects on meat quality.


Author(s):  
X. H. Zhang ◽  
H. .Liao ◽  
Y. X. Qi ◽  
Y. Q. Wang ◽  
Y. Z. Pang ◽  
...  

Extracellular matrix (ECM) is the major macromolecule in skeletal muscle, and collagen is main component of ECM surrounding muscle fiber and adipocyte, which affect meat quality greatly. The remodeling of ECM is regulated by matrix metalloproteinases, such as ADAMTS2, which is essential for the maturation of triple helical collagen fibrils in body. The expression patterns of COL1A1, COL2A1, COL3A1 and ADAMTS2 in longissimus dorsi muscle were explored by qRT-PCR and results indicated that the expression levels of COL1A1, COL3A1 and ADAMTS2 were significantly higher at 3 and 24 month, while significantly lower at 12 and 30 month. The expression of ADAMTS2 and COL1A1 had significant positive relationships with intramuscular fat content, while expression of COL3A1 had significant positive relationship with shearing force and water holding capacity in cattle. The expression levels of collagen and ADAMTS2 were significantly higher in mesenteric fat, mammary fat pad and subcutaneous fat than in longissimus dorsi muscle, biceps femoris and infraspinitus tissues. The expressions levels of COL1A1, COL3A1 and ADAMTS2 were significantly lower in marbling fat than in other fat tissues. This study indicated that the expression of collagen and ADAMTS2 had important effects on postnatal skeletal muscle development and meat quality.


1995 ◽  
Vol 61 (2) ◽  
pp. 325-331 ◽  
Author(s):  
K. Lundström ◽  
A. Karlsson ◽  
J. Håkansson ◽  
I. Hansson ◽  
M. Johansson ◽  
...  

AbstractA pedigree originally designed for pig genome mapping was used in order to study carcass and muscle development as well as meat quality of F2-crosses between the European Wild Pig and the domestic Large White pig (no. = 191). As a marker for the influence of genes inherited from the ‘wild’ and domestic grandparents, grouping based on the length of the small intestine was used. The pigs were also typed for genetic polymorphism at the calcium release channel (CRO locus controlling halothane susceptibility in pigs, and one of the Wild boars was found to be a carrier of the halothane mutation. At assessment, the carcasses were divided into cuts, the back and ham were defatted, and m. longissimus dorsi and the large muscles of the ham were weighed separately.Wlien grouped according to length of the small intestine, those animals with a short small intestine were more similar to Wild Pig, e.g. they were older at slaughter and had a slower growth rate than the other group. Their carcasses contained less lean meat, more flare fat and more subcutaneous fat. No difference in meat quality could be discerned between the groups, except for a tendency to greater pigment content and higher shear force value in the group with a short small intestine.The effect of the halothane mutation at the CRC locus was very prominent, although no animals had the gene in homozygous form. Carriers of the gene were leaner and had a higher reflectance value, lower water-holding capacity, lower pHu, higher protein denaturation and higher shear force value.


2020 ◽  
Author(s):  
Yuqin Wu ◽  
Youli Wang ◽  
Dafei Yin ◽  
Tahir Mahmood ◽  
Jianmin Yuan

Abstract Background In recent years, increased attention has been focused on breast muscle yield and meat quality in poultry production. Supplementation with nicotinamide and butyrate sodium can improve the meat quality of broilers. However, the potential molecular mechanism is not clear yet. This study was designed to investigate the effects of supplementation with a combination of nicotinamide and butyrate sodium on breast muscle transcriptome of broilers under high stocking density. A total of 300 21-d-old Cobb broilers were randomly allocated into 3 groups based on stocking density: low stocking density control group (L; 14 birds/m 2 ), high stocking density control group (H; 18 birds/m 2 ), and high stocking density group provided with a combination of 50 mg/kg nicotinamide and 500 mg/kg butyrate sodium (COMB; 18 birds/m 2 ), raised to 42 days of age. Results The H group significantly increased cooking losses, pH decline and activity of lactate dehydrogenase in breast muscle when compared with the L group. COMB showed a significant decrease in these indices by comparison with the H group ( P < 0.05). The transcriptome results showed that key genes involved in glycolysis, proteolysis and immune stress were up-regulated whereas those relating to muscle development, cell adhesion, cell matrix and collagen were down-regulated in the H group as compared to the L group. In contrast, genes related to muscle development, hyaluronic acid, mitochondrial function, and redox pathways were up-regulated while those associated with inflammatory response, acid metabolism, lipid metabolism, and glycolysis pathway were down-regulated in the COMB group when compared with the H group. Conclusions The combination of nicotinamide and butyrate sodium may improve muscle quality by enhancing mitochondrial function and antioxidant capacity, inhibiting inflammatory response and glycolysis, and promoting muscle development and hyaluronic acid synthesis.


2020 ◽  
Author(s):  
Yuqin Wu ◽  
Youli Wang ◽  
Dafei Yin ◽  
Tahir Mahmood ◽  
Jianmin Yuan

Abstract Background: In recent years, increased attention has been focused on breast muscle yield and meat quality in poultry production. Supplementation with nicotinamide and butyrate sodium can improve the meat quality of broilers. However, the potential molecular mechanism is not clear yet. This study was designed to investigate the effects of supplementation with a combination of nicotinamide and butyrate sodium on breast muscle transcriptome of broilers under high stocking density. A total of 300 21-d-old Cobb broilers were randomly allocated into 3 groups based on stocking density: low stocking density control group (L; 14 birds/m2), high stocking density control group (H; 18 birds/m2), and high stocking density group provided with a combination of 50 mg/kg nicotinamide and 500 mg/kg butyrate sodium (COMB; 18 birds/m2), raised to 42 days of age. Results: The H group significantly increased cooking losses, pH decline and activity of lactate dehydrogenase in breast muscle when compared with the L group. COMB showed a significant decrease in these indices by comparison with the H group (P < 0.05). The transcriptome results showed that key genes involved in glycolysis, proteolysis and immune stress were up-regulated whereas those relating to muscle development, cell adhesion, cell matrix and collagen were down-regulated in the H group as compared to the L group. In contrast, genes related to muscle development, hyaluronic acid, mitochondrial function, and redox pathways were up-regulated while those associated with inflammatory response, acid metabolism, lipid metabolism, and glycolysis pathway were down-regulated in the COMB group when compared with the H group. Conclusions: The combination of nicotinamide and butyrate sodium may improve muscle quality by enhancing mitochondrial function and antioxidant capacity, inhibiting inflammatory response and glycolysis, and promoting muscle development and hyaluronic acid synthesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Yang ◽  
Yinuo Liu ◽  
Yunyun Cheng ◽  
Chunli Wang ◽  
Jie Song ◽  
...  

Maternally expressed gene 3 (MEG3) is a long non-coding RNA that is a crucial regulator of skeletal muscle development. Some single-nucleotide polymorphism (SNP) mutants in MEG3 had strong associations with meat quality traits. Nevertheless, the function and mechanism of MEG3 mutants on porcine skeletal muscle development have not yet been well-demonstrated. In this study, eight SNPs were identified in MEG3 of fat- and lean-type pig breeds. Four of these SNPs (g.3087C &gt; T, g.3108C &gt; T, g.3398C &gt; T, and g.3971A &gt; C) were significantly associated with meat quality and consisted of the CCCA haplotype for fat-type pigs and the TTCC haplotype for lean-type pigs. Quantitative real-time PCR results showed that the expression of MEG3-TTCC was higher than that of MEG3-CCCA in transcription level (P &lt; 0.01). The stability assay showed that the lncRNA stability of MEG3-TTCC was lower than that of MEG3-CCCA (P &lt; 0.05). Furthermore, the results of qRT-PCR, Western blot, and Cell Counting Kit-8 assays demonstrated that the overexpression of MEG3-TTCC more significantly inhibited the proliferation of porcine skeletal muscle satellite cells (SCs) than that of MEG3-CCCA (P &lt; 0.05). Moreover, the overexpression of MEG3-TTCC more significantly promoted the differentiation of SCs than that of MEG3-CCCA (P &lt; 0.05). The Western blot assay suggested that the overexpression of MEG3-TTCC and MEG3-CCCA inhibited the proliferation of SCs by inhibiting PI3K/AKT and MAPK/ERK1/2 signaling pathways. The overexpression of the two haplotypes also promoted the differentiation of SCs by activating the JAK2/STAT3 signaling pathway in different degrees. These data are valuable for further studies on understanding the crucial role of lncRNAs in skeletal muscle development.


Sign in / Sign up

Export Citation Format

Share Document