Recent advancements of molecular breeding and functional genomics for improving nitrogen-, phosphorus- and potassium-use efficiencies in wheat.

Author(s):  
T. Maharajan ◽  
G. Victor Roch ◽  
S. Antony Ceasar

Abstract This chapter discusses the importance and implications of nitrogen, phosphorus and potassium as essential nutrients and the application of molecular breeding and functional genomics for improving nutrient-use efficiency in wheat are presented. Improvement of nutrient-use efficiency through genetic modification and impact of climate change on nitrogen, phosphorus and potassium management were also discussed.

2011 ◽  
Vol 60 (1-6) ◽  
pp. 95-105 ◽  
Author(s):  
Pengfei Wu ◽  
Mulualem Tigabu ◽  
Xiangqing Ma ◽  
Per Christer Odén ◽  
Youlan He ◽  
...  

Abstract A provenance trial involving 16 Chinese fir provenances was established in southern China in 1979, and biomass, nutrient content and nutrient use efficiency were assessed at the age of 23. One-way analysis of variance revealed significant inter-provenance variation (p<0.0001) in measured variables. The mean total biomass ranged from 98.8±5.3 to 163.3±4.2 t ha−1, and the stemwood accounted for 47–65% of the total biomass, followed by roots (11–24%), stembark (7.4–13.7%), and needles and branches (< 10 %). Much of the nitrogen, phosphorus and potassium were stored in the needles, although the concentration varies among provenances. Whole-tree nutrient use efficiency varied from 115.4±2.1 to 180.2±1.02 g g−1, while efficiency in stemwood production ranged from 53.9±3.1 to 106.3±1.1 g g−1. Provenances did not display consistent variation in all measured variables, suggesting the need for multiple criteria for selection in future tree improvement program. In conclusion, the study reveals the existence of considerable variation in biomass production and nutrient use efficiency among Chinese fir provenances that can be exploited for selecting desirable genotypes for enhancing productivity of Chinese fir plantations.


Author(s):  
Damar López-Arredondo ◽  
Xiao-rong Fan ◽  
Yin-ping Jiao

Abstract This chapter defines nutrient-use efficiency and the relevance of nitrogen (N) and phosphorus (P) as essential macronutrients and the molecular regulation of their metabolism in maize. The efforts towards molecular breeding of maize to improve NUE and PUE are also summarized and discussed. Plant phenotyping as one of the main and challenging components of molecular breeding and the potential of genome editing approaches to implement current findings on maize are addressed.


Author(s):  
N. Bhavya ◽  
P. K. Basavaraja ◽  
H. Mohamed Saqeebulla ◽  
G. V. Gangamrutha

A field experiment was conducted during Kharif 2017 at Devanahalli village, Bengaluru rural district of Karnataka to evaluate the effect of different approaches of nutrient application on yield,  nutrient uptake and use efficiency by carrot (Daucus carota L.). The experiment was laid out in randomized complete block design replicated thrice with eight treatments comprisingT1 (STCR target 20 tha-1  through inorganics), T2 (STCR target 20 tha-1  through integrated), T3 (STCR target 25 tha-1  through inorganics), T4 (STCR target 25 tha-1  through integrated), T5 (RDF (75: 63: 50) N, P2O5, K2O kg ha-1+ FYM), T6 (LMH /STL + FYM), T7 (Farmers practice (92.6:159:0) N, P2O5 kg ha-1 + FYM), T8 (Absolute control).Results revealed that significantly higher root (27.51 t ha-1)  and shoot (16.48 t ha-1) yield were recorded in STCR target of 25 t ha-1 through   integrated approach. Similarly, higher total uptake of nitrogen, phosphorus and potassium  (297.07 kg, 57.48 kg and 253.81 kg ha-1, respectively) by carrot and the higher apparent recovery   efficiency (0.35, 0.08 and 0.58 kg kg-1 of N, P2O5 and K2O, respectively) and agronomic nutrient use efficiency (26.10, 12.37 and 48.25 kg kg-1 of N, P2O5 and K2O, respectively) were recorded in the same STCR target of 25 t ha-1 through integrated approach. However, the better profit was recorded (value cost ratio: 43.30) in STCR target of 25 t ha-1 through inorganics. The STCR target of 25 t ha-1 through integrated approach had the most positive effect for the carrot cultivation.


HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1746-1752 ◽  
Author(s):  
Hala G. Zahreddine ◽  
Daniel K. Struve ◽  
Salma N. Talhouk

The native flora of Lebanon is threatened. As part of an ex situ conservation strategy, this study was conducted to determine if Malus trilobata (Schneid.) and Acer syriacum (Boiss. and Gaill.), two native Lebanese trees, were amenable to container production. Therefore, these species' growth and nitrogen, phosphorus, and potassium uptake efficiency and distribution under two fertilizer rates were studied. Malus trilobata seedlings were obtained from seeds collected from two mother trees, whereas Acer syriacum seeds were collected from a single tree. Two-year-old seedlings raised from these seeds were planted in 11-L containers in a 3:1 pine bark:compost substrate. Half the seedlings within each source and species were assigned to either 25 or 100 mg·L−1 N from 21N–3.1P–5.9K water-soluble fertilizer treatments. Seedlings of both Malus trilobata sources grown under 25 mg·L−1 N were taller than those grown at 100 mg·L−1 N. Nitrogen loading occurred in plants of Malus trilobata under the high fertilizer rate, although total plant N, phosphorus, and potassium content was unaffected by fertilizer rate, because larger seedlings had lower nutrient concentrations. There were significant differences in growth among the two Malus trilobata seed sources, but there were no differences in mineral nutrient uptake or nutrient use efficiency. Growth, mineral nutrient uptake, and nutrient use efficiency of Acer syriacum seedlings were unaffected by fertilizer rate. Malus trilobata and Acer syriacum seedlings are amenable to container production. Using container production for these species with subsequent transplanting into managed landscapes might be a viable ex situ conservation method. Further studies are needed.


Author(s):  
Gayatri Sahu ◽  
Shreya Das ◽  
Samanyita Mohanty

The imbalanced use of fertilizers in India is evident from the fact that the current ratio of nitrogen, phosphorus and potassium in agricultural soil in several states is skewed towards nitrogen. This imbalance causes problems, right from stagnating or declining productivity to soil sickness, widespread deficiency of macro nutrients and micronutrients, and soil alkalinity and salinity. Eventually, it results in reduced efficiency of fertilisers, low yields and low profitability for farmers. Also, nitrogen pollution of surface and groundwater due to excessive fertiliser use has reached alarming levels in several states. Chemical fertilizers are currently the major emitters of nitrous oxide gas, a potent greenhouse gas and ozone depleting substance. Nutrient budget is an important tool to provide an early indication of potential problems arising from nutrient surplus and nutrient deficit. Balanced use of all types of fertilizers, including traditional organic manures and biofertilizers are needed to bring about a change in the prevailing regime that encourages excessive use of chemical fertilizers. However, meeting future food security targets in an over-populated developing country like India, needs to increase the nutrient use efficiency. This ultimately leads to site-specific need-based nutrient application and minimizing nutrient losses from fields. This leads to the 4R Nutrient Stewardship concept, applying the Right Source of nutrients, at the Right Rate, at the Right Time and in the Right Place. This paper provides a historical overview of the nutrient budgeting efforts and systematically reviews major challenges, opportunities, in defining, quantifying, and applying nutrient budgets and improving nutrient use efficiency.


2020 ◽  
Vol 26 (2) ◽  
Author(s):  
Kavita Choudhary ◽  
Dayanand Dayanand ◽  
Preeti Mishra

The experiments were conducted to determine effects of farming practises on soil quality of fields. Comparative analyses of soil samples from organic and conventional farms were carried out for soil organic matter nitrogen, phosphorus, potassium, salinity, and soil pH. Applications of organic manures increase the availability of organic elements in soil naturally and improve the Nutrient Use Efficiency (NUE) of crops. Standard chemical analytical methods were used to determine organic matter, EC, pH, in soil. Special attention was paid to phosphorus, nitrogen and potassium. Soil profile analysis showed that organic farming gradually enhances soil quality naturally. Results indicated increasing levels of organic carbon, total nitrogen, phosphorus, potassium, CEC, pH of soil from farms practising organic farming.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document