Dissemination and impacts of the fungal pathogen, Colletotrichum gloeosporioides f. sp. miconiae, on the invasive alien tree, Miconia calvescens, in Tahiti (South Pacific).

Author(s):  
J. Y. Meyer ◽  
R. Taputuarai ◽  
E. Killgore
2010 ◽  
pp. 12-17 ◽  
Author(s):  
Gyula Oros ◽  
László Vajna ◽  
Klára Balázs ◽  
Zoltán Fekete ◽  
Zoltán Naár ◽  
...  

Anthracnose is considered one of the most destructive diseases for sour cherry production due to the rapid development of the disease on fruits. Glomerella cingulata (Stoneman) Spauld. & H. Schrenk (anam.: Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz.) has been the fungal pathogen responsible for anthracnose in last decades. Yield losses greater than 90% may occur under epidemic conditions. C. acutatum (J.H. Simmonds, 1968) strains were isolated of sourcherry plantations in East Hungary and this pathogen, new for Hungarian microbiont became recently dominant. Contrarily to the former species it is certainly transmitted with ants during fruit ripening. About third of strains proved to be cutinase producers that enable them to actively penetrate via cuticule, and these strains infect directly berries of blackberry, grape and tomato as well as plum and apple. Most of cutinase negative strains could also infect these fruits after mechanic injury. All strains of both species produce amylase, cellulase, lecithinase, lipase, polyfenoloxydase and protease in vitro, although the activity of these enzymes highly varied in the medium. The only C. acutatum strains produced noticeable amount of chitinase. Strains, tolerant to recently applied fungicides to control the anthracnose, could be isolated of sour cherry plantations that might be the cause of ineffectiveness of control measures in 2010. The mycofungicide containing mixture of three Trichoderma species in oil carrier could efficiently depress the development of anthracnose in ripening sour cherry.


Plant Disease ◽  
2016 ◽  
Vol 100 (4) ◽  
pp. 672-678 ◽  
Author(s):  
Lin Huang ◽  
Qiu-Cheng Li ◽  
Ya Zhang ◽  
De-Wei Li ◽  
Jian-Ren Ye

The genus Colletotrichum is considered the eighth most important group of plant-pathogenic fungi in the world due to its scientific and economic importance. Colletotrichum spp. cause anthracnose disease in a wide range of economically important plants. Euonymus japonicus Thunb. (Celastraceae) is a broad-leaved evergreen tree that is widely planted in the parks and landscapes of China. An anthracnose occurs on E. japonicus in China but there has been a disagreement on the identity of the fungal pathogen. In this study, the fungal isolate HYCG2-3 was determined by Koch’s postulates to be a pathogen on E. japonicus. Based on the morphological and molecular methods, isolate HYCG2-3 was identified as Colletotrichum gloeosporioides sensu stricto within the C. gloeosporioides species complex.


1998 ◽  
Vol 46 (1) ◽  
pp. 143
Author(s):  
Agnieszka M. Poplawski ◽  
John A. G. Irwin ◽  
John M. Manners

Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype- and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.


2001 ◽  
Vol 41 (6) ◽  
pp. 805 ◽  
Author(s):  
Zainuri ◽  
D. C. Joyce ◽  
H. Wearing ◽  
L. Coates ◽  
L. Terry

This study investigated treatment of mango (Mangifera indica L.) fruit with 2 host defence-promoting compounds for suppression of anthracnose disease (Colletotrichum gloeosporioides). Cultivar ‘Kensington Pride’ fruit were treated at concentrations of up to 1000 mg/L with either potassium phosphonate or salicylic acid. Applications were by various combinations of pre- and postharvest dips and vacuum infiltration. Postharvest treatments at up to 2000 mg/L salicylic acid were evaluated in a second fruiting season. Fruit were either uninoculated or inoculated with the fungal pathogen. Colour, firmness and disease-severity were assessed during shelf life at 23°C. There were no significant (P&gt;0.05) effects of potassium phosphonate or salicylic acid on anthracnose disease severity in the first season. Moreover, phosphonate or salicylic acid treatment did not significantly affect fruit colour or firmness changes. There were significant (P&lt;0.05) reductions in anthracnose severity in the second season, especially at the highest concentration of 2000 mg/L salicylic acid. Mango fruit skin colour and firmness changes were also slowed down significantly (P<0.05). These effects of salicylic acid were attributed to inhibition of mango fruit skin ripening (senescence).


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Pradeep Kumar Sudheeran ◽  
Noa Sela ◽  
Mira Carmeli-Weissberg ◽  
Rinat Ovadia ◽  
Sayantan Panda ◽  
...  

AbstractMango fruit exposed to sunlight develops red skin and are more resistant to biotic and abiotic stresses. Here we show that harvested red mango fruit that was exposed to sunlight at the orchard is more resistant than green fruit to Colletotrichum gloeosporioides. LCMS analysis showed high amounts of antifungal compounds, as glycosylated flavonols, glycosylated anthocyanins, and mangiferin in red vs. green mango skin, correlated with higher antioxidant and lower ROS. However, also the green side of red mango fruit that has low levels of flavonoids was resistant, indicated induced resistance. Transcriptomes of red and green fruit inoculated on their red and green sides with C. gloeosporioides were analyzed. Overall, in red fruit skin, 2,187 genes were upregulated in response to C. gloeosporioides. On the green side of red mango, upregulation of 22 transcription factors and 33 signaling-related transcripts indicated induced resistance. The RNA-Seq analysis suggests that resistance of the whole red fruit involved upregulation of ethylene, brassinosteroid, and phenylpropanoid pathways. To conclude, red fruit resistance to fungal pathogen was related to both flavonoid toxicity and primed resistance of fruit that was exposed to light at the orchard.


2002 ◽  
Vol 48 (11) ◽  
pp. 1035-1039 ◽  
Author(s):  
Paul H Goodwin ◽  
Grace Y.-J Chen

The potential role of a GSK3 protein kinase homolog, cggsk, was examined from Colletotrichum gloeosporioides f.sp. malvae, a fungal pathogen of Malva pusilla. A peak in cggsk expression relative to a constitutively expressed fungal actin gene occurred during host penetration and was followed by much lower expression levels during subsequent biotrophic and necrotrophic growth in host tissue. The peak level of cggsk expression observed during penetration was 21-fold greater than that during necrotrophic growth. Expression of cggsk showed small but reproducible changes during growth in culture; however, the levels were always similar to that during necrotrophic growth in the host. One possible role for cggsk could be to coordinate fungal development during host penetration.Key words: appressorium, biotrophy, GSK3, hemibiotrophy, necrotrophy.


Author(s):  
R. Kannan ◽  
V. Dhivya

Background: Mango productivity was very much affected due to a major fungal pathogen, Colletotrichum gloeosporioides causing anthracnose mango rot. The present study was carried out to investigate the influence of abiotic factors for the support of superficial growth of isolated fungus and finding a minimum inhibitory concentration of different fungicides. Methods: Among four different culture media tested, the highest radial growth and sporulation of the fungus were recorded in Oatmeal agar (OMA) (84 mm) followed by Conn’s agar (CA), Czapek Dox agar (CDA) and Potato dextrose agar (PDA). Among the different pH tested, pH 7.0 was found to be the best in supporting the good radial growth (69 mm) followed by pH 6.0 (56 mm), pH 5.5 (49 mm), pH 7.5 (43 mm) and pH 8.0 (37 mm). Among the various temperature tested, 25oC (69.32) was found to be the best followed by 20oC (52.53 mm), 30oC (65.23 mm) and 35oC. Result: Among the fungicides tested, Zineb 68% + Hexaconazole 4% WP (avtar) was found best as the radial growth was observed to be 45, 41, 36, 32, 25 mm at 5, 10, 25, 50 and 100 ppm, respectively as compared to 80 mm in control. The fungicide Tricyclazole 18% + Mancozeb 62% WP (Merger) was found to be the least effective in checking the radial growth of C. gloeosporioides even at 100 ppm concentration.


2019 ◽  
Vol 73 (1) ◽  
pp. 17
Author(s):  
Mélanie Libeau ◽  
Jean-Yves Meyer ◽  
Ravahere Taputuarai ◽  
Robin Pouteau

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Vantha Choub ◽  
Chaw Ei Htwe Maung ◽  
Sang-Jae Won ◽  
Jae-Hyun Moon ◽  
Kil Yong Kim ◽  
...  

The aim of this study was to investigate the antifungal activity of a cyclic tetrapeptide from Bacillus velezensis CE 100 against anthracnose-causing fungal pathogen Colletotrichum gloeosporioides. Antifungal compound produced by B. velezensis CE 100 was isolated and purified from ethyl acetate extract of B. velezensis CE 100 culture broth using octadecylsilane column chromatography. The purified compound was identified as cyclo-(prolyl-valyl-alanyl-isoleucyl) based on mass spectrometer and nuclear magnetic resonance analyses. This is the first report of the isolation of a cyclic tetrapeptide from B. velezensis CE 100 culture filtrate. Cyclic tetrapeptide displayed strong antifungal activity at concentration of 1000 µg/mL against C. gloeosporioides mycelial growth and spore germination. Our results demonstrate that the antifungal cyclic tetrapeptide from B. velezensis CE 100 has potential in bioprotection against anthracnose disease of plants caused by C. gloeosporioides.


Sign in / Sign up

Export Citation Format

Share Document