Improving the nutrient status of a commercial dairy farm: An integrated approach

2003 ◽  
Vol 18 (3) ◽  
pp. 137-145 ◽  
Author(s):  
Derek H. Lynch ◽  
Rupert W. Jannasch ◽  
Alan H. Fredeen ◽  
Ralph C. Martin

AbstractMinimizing nutrient surpluses and improving efficiency of nutrient use are key challenges for all dairy farming production systems, driven by economic, environmental and increasing regulatory constraints. Our study examined the efficiency of N, P and K use on a commercial dairy farm through an integrated approach that evaluated the nutrient status of all aspects of the production system of the case-study farm, a 75 lactating Holstein cow dairy in Kings County, Nova Scotia, Canada. During the decade after 1988, the farm owner implemented a series of changes in production practices, including diversification of the crop rotation, implementation of a management intensive grazing (MIG) regime and adoption of a systematic approach to soil and nutrient management. Milk production, and associated farm exports of N, P and K, increased by 666 kg cow−1 between 1990 and 2000. Purchases of N-P-K fertilizers were eliminated in 1990 and feed nutrient imports were dramatically reduced. Feed costs per liter of milk declined from 14.3 cents (CDN) liter−1 in 1990–92 to 11.6 cents liter−1 in 1998–2000, even as feed prices increased regionally by 10–20% over the same period. Modeling of current whole farm mass N, P and K balance indicated that 25.0% of all N inputs are recovered inform products, milk and meat. Non-legume-derived field N input (67kg Nha−1 before losses) was close to optimum for the predominantly legume/grass-based forage cropping system. Model-determined annual farm nutrient surpluses (outputs-inputs) for P (9.0kgha−1 yr−1) and K (8.2 kg ha−1 yr−1) were significantly lower than those previously reported for regional confinement-based dairy farms, which were more reliant on corn production. However, data from 16 years of soil analysis (1985–2001) indicated an increase in soil-test P levels of approximately 2 mg kg−1 yr−1. Recent refinements in dairy animal dietary P levels have further reduced the farm P surplus (2.6 kg ha−1 in year 2001) and are shown as key to a strategy for reversal of the trend in soil-test P levels. In summary, the combined approach of whole-farm system nutrient management, crop diversification and MIG increased milk production and minimized costs while reducing farm nutrient inputs. The study demonstrates how an approach to dairy farm nutrient management which integrates livestock and crop nutrient requirements may reduce dairy farm nutrient loading while maintaining productivity.

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 158
Author(s):  
John L. Havlin ◽  
Robert Austin ◽  
David Hardy ◽  
Adam Howard ◽  
Josh L. Heitman

With limited research supporting local nutrient management decisions in North Carolina grape (Vitis vinifera) production, field studies (2015–17) were conducted to evaluate late season foliar nitrogen (N) application on leaf and petiole N concentration and yeast assimilable N (YAN) in the fruit. Foliar urea (1% v/v) was applied at different rates and application times beginning pre-and post-veraison. Compared to soil applied N, late season foliar N substantially enhanced petiole N and grape YAN. Smaller split N applications were generally more effective in increasing YAN than single larger N rates. These data demonstrate the value of assessing plant N content at full bloom with petiole N analysis or remote sensing to guide foliar N management decisions. Additional field studies (2008–11) were conducted to evaluate pre-bud soil applied phosphorus (P) and potassium (K) effects on petiole P and K nutrient status. Fertilizer P and K were initially broadcast applied (0–896 kg P2O5 ha−1; 0–672 kg K2O ha−1) prior to bud-break in 2008–09 and petiole P and K at full bloom soil test P and K were monitored for three to four years after application. Soil test and petiole P and K were significantly increased with increasing P and K rates, which subsequently declined to near unfertilized levels over the sampling time depending on site and P and K rate applied. These data demonstrate the value of annually monitoring petiole P and K levels to accurately assess plant P and K status to better inform nutrient management decisions.


2015 ◽  
Vol 7 (1) ◽  
pp. 211-214
Author(s):  
M.V. Singh ◽  
Mukesh Kumar ◽  
S. Mitra ◽  
M. Ramesh Naik

A field experiment was conducted during the year 2011-13 to study the nutrient management based on soil test to achieve the target yield of jute and rice and their effect of soil nutrient status for jute-rice cropping system. The target yield of jute fibre (3.5 t/ha) with -6% deviation and target yield of rice (5.5 t/ha) were achieved with application of 100% NPK based on ST-TY based along with 5 t/ha Farm Yard Manure (FYM). The highest system productivity (11.7 t/ha) and benefit-cost ratio (3.16) was also recorded higher with application 100% NPK based on ST-TY based along with 5 t/ha FYM. The nutrient uptake by crops and soil nutrients status were higher after three year of jute-rice cropping sequence when NPK were applied with FYM. Hence, combination of inorganic and organic (FYM) fertilizer could achieve target yield and maintain the soil fertility status.


2018 ◽  
Vol 58 (9) ◽  
pp. 1656 ◽  
Author(s):  
Innocent Rugoho ◽  
Hayden Lewis ◽  
Muhammad Islam ◽  
Andrew McAllister ◽  
Gemma Heemskerk ◽  
...  

Excess nutrients are challenging the long-term sustainability of grazing-based dairy farming. Whole-farm nutrient-mass balance (NMB) is a well recognised approach to improve on-farm nutrient management decisions. In the present paper, we use a standardised approach for quantifying NMB on grazing-based dairy farms, using a newly developed online tool. Preliminary evaluation, using selected farm data from a previous Australia-wide dairy-farm nutrient study, demonstrated highly comparable estimates of farm area, nutrient fluxes and NMB, with substantial efficiencies in time and sample analysis. Nutrient mass balances were also determined on 16 diverse dairy farms across the five major dairy regions of Victoria, Australia. These results highlighted the importance of purchased feed, fertiliser and milk sales, as major sources of nutrient inputs and outputs, with whole-farm NMB for the 16 dairy farms ranging from 185 to 481 kg/ha for nitrogen, 12–59 kg/ha for phosphorus, 9–244 kg/ha for potassium and –6–55 kg/ha for sulfur. Current industry adoption of the NMB tool has confirmed the benefits of a standardised and efficient collation and processing of readily available farm data to inform nutrient management decisions on commercial dairy farms. We suggest that the standardised assessment of nutrient fluxes, balances and efficiency, as well as feed- and milk-production performance at the whole-farm level, provides dairy farmers, farm advisors and industry and policy analysts with the ability to determine industry-wide goals and improve environmental performance.


Soil Analysis: An Interpretation Manual is a practical guide to soil tests. It considers what soil tests are, when they can be used reliably and consistently, and discusses what limits their application. It is the first nationally accepted publication that is appropriate for Australian soils and conditions. The first three chapters review the general principles and concepts of soil testing, factors affecting soil test interpretation and soil sampling and handling procedures. The next two chapters describe morphological indicators of soil and include colour plates of major Australian agricultural soils. These are followed by a series of chapters which present soil test calibration data for individual elements or a related group of tests such as the range of soil tests used to interpret soil acidity. Each of these chapters also summarises the reactions of the particular element or parameter in the soil and describes the tests commonly used in Australia. The final chapter presents a structured approach to nutrient management and making fertiliser recommendations using soil test data. The manual will be of particular interest to soil and environmental scientists, farm advisers, consultants and primary producers who will find the manual an essential reference to understanding and interpreting soil test data. Many of the soil tests evaluated in the book are used throughout the world. Soil Analysis: An Interpretation Manual was commissioned and developed by the Australian Soil and Plant Analysis Council (ASPAC). It comprises the work of 37 experts, which has been extensively peer reviewed.


Author(s):  
C. Van der Geest

I am a 30-year-old sharemilker on my parent's 600 cow developing farm near Blackball on the western side of the Grey Valley. Earlier this year I competed in the National Young Farmer of the Year competition and finished a close third. So what is information? There are two types of information that I use. There is data gathered from my farm to help fine tune the running of the day to day operations on the farm And directional information This is the information that arrives in papers and directs the long-term direction and plans of the farm and farming businesses. Due to the variability in weather on the Coast there is a greater need to monitor and adjust the farming system compared to an area like Canterbury. This was shown last year (2001/02) when the farm was undergoing a rapid period of development and I was under time restraints from increasing the herd size, building a new shed as well as developing the farm. The results of the time pressure was that day to day information gathering was lower resulting in per cow production falling by 11% or around $182 per cow. So what information was lacking that caused this large drop in profit. • Pasture growth rates • Cow condition • Nitrogen requirements • Paddock performance • Milk production • Pre-mating heat detection As scientists and advisers I hear you say that it is the farmer's responsibility to gather and analyse this information. You have the bigger topics to research and discover, gene marking, improving pasture species, sexing of sperm and ideas that I have not even contemplated yet. This is indeed very valuable research. Where would farming be without the invention of electric fences, artificial breeding and nitrogen research? But my problem is to take a farm with below average production to the top 10% in production with the existing technology and farming principles. I have all the technical information I need at the end of a phone. I can and do ring my consultant, fertiliser rep, vet, neighbour and due to the size and openness of New Zealand science, at present if they do not know I can ring an expert in agronomy, nutrition, soils and receive the answer that I require. I hope that this openness remains as in a time of privatisation and cost cutting it is a true advantage. I feel that for myself the next leap in information is not in the growing of grass or production of milk but in the tools to collect, store and utilise that information. This being tied to a financial benefit to the farming business is the real reason that I farm. Think of the benefits of being able to read pasture cover on a motorbike instantly downloaded, overlaying cow intake with milk production, changes in cow weight, daily soil temperature and predicted nitrogen response. Telling me low producing cows and poor producing paddocks, any potential feed deficits or surpluses. This would be a powerful information tool to use. The majority of this information is already available but until the restraints of time and cost are removed from data gathering and storage, this will not happen.


2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


2021 ◽  
Vol 13 (8) ◽  
pp. 4401
Author(s):  
Jeffrey M. Novak ◽  
James R. Frederick ◽  
Don W. Watts ◽  
Thomas F. Ducey ◽  
Douglas L. Karlen

Corn (Zea mays L.) stover is used as a biofuel feedstock in the U.S. Selection of stover harvest rates for soils is problematic, however, because excessive stover removal may have consequences on plant available P and K concentrations. Our objective was to quantify stover harvest impacts on topsoil P and K contents in the southeastern U.S. Coastal Plain Ultisols. Five stover harvest rates (0, 25, 50, 75 and 100% by wt) were removed for five years from replicated plots. Grain and stover mass with P and K concentration data were used to calculate nutrient removal. Mehlich 1 (M1)-extractable P and K concentrations were used to monitor changes within the soils. Grain alone removed 13–15 kg ha−1 P and 15–18 kg ha−1 K each year, resulting in a cumulative removal of 70 and 85 kg ha−1 or 77 and 37% of the P and K fertilizer application, respectively. Harvesting stover increased nutrient removal such that when combined with grain removed, a cumulative total of 95% of the applied P and 126% of fertilizer K were taken away. This caused M1 P and K levels to decline significantly in the first year and even with annual fertilization to remain relatively static thereafter. For these Ultisols, we conclude that P and K fertilizer recommendations should be fine-tuned for P and K removed with grain and stover harvesting and that stover harvest of >50% by weight will significantly decrease soil test M1 P and K contents.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 385
Author(s):  
Kosuke Sumi ◽  
Swe Zar Maw ◽  
Thi Thi Zin ◽  
Pyke Tin ◽  
Ikuo Kobayashi ◽  
...  

Accurately predicting when calving will occur can provide great value in managing a dairy farm since it provides personnel with the ability to determine whether assistance is necessary. Not providing such assistance when necessary could prolong the calving process, negatively affecting the health of both mother cow and calf. Such prolongation could lead to multiple illnesses. Calving is one of the most critical situations for cows during the production cycle. A precise video-monitoring system for cows can provide early detection of difficulties or health problems, and facilitates timely and appropriate human intervention. In this paper, we propose an integrated approach for predicting when calving will occur by combining behavioral activities extracted from recorded video sequences with a Hidden Markov Model. Specifically, two sub-systems comprise our proposed system: (i) Behaviors extraction such as lying, standing, number of changing positions between lying down and standing up, and other significant activities, such as holding up the tail, and turning the head to the side; and, (ii) using an integrated Hidden Markov Model to predict when calving will occur. The experiments using our proposed system were conducted at a large dairy farm in Oita Prefecture in Japan. Experimental results show that the proposed method has promise in practical applications. In particular, we found that the high frequency of posture changes has played a central role in accurately predicting the time of calving.


Soil Research ◽  
1984 ◽  
Vol 22 (1) ◽  
pp. 81 ◽  
Author(s):  
DK Friesen ◽  
GJ Blair

Soil testing programs are often brought in disrepute by unexplained variability in the data. The deposition of dung and urine onto grazed pasture brings about marked variation in the chemical status of soils which contributes to this variability. A study was undertaken to compare a range of sampling procedures to estimate Colwell-P, Bray-1 P, bicarbonate K and pH levels in adjacent low and high P status paddocks. The sampling strategies used consisted of 75 by 50 m grids; whole and stratified paddock zig-zag and cluster (monitor plot) samplings. Soil test means for the various parameters did not vary among sampling methods. The number of grid samples required to estimate within 10% of the mean varied from 121 for Bray-1 P down to 1 for soil pH. Sampling efficiencies were higher for cluster sampling than for whole paddock zig-zag path sampling. Stratification generally did not improve sampling efficiency in these paddocks. Soil test means declined as sampling depth increased, but the coefficient of variation remained constant for Colwell-P and pH. The results indicate that cluster sampling (monitor plots) is the most appropriate procedure for estimating the nutrient status of grazed pastures. This sampling method enables a more accurate measure to be taken of the nutrient status of a paddock and should allow more reasonable estimates to be made of the temporal variations in soil test.


2010 ◽  
Vol 50 (4) ◽  
pp. 246 ◽  
Author(s):  
R. G. Chataway ◽  
R. G. Walker ◽  
M. N. Callow

Farmlets, each of 20 cows, were established to field test five milk production systems and provide a learning platform for farmers and researchers in a subtropical environment. The systems were developed through desktop modelling and industry consultation in response to the need for substantial increases in farm milk production following deregulation of the industry. Four of the systems were based on grazing and the continued use of existing farmland resource bases, whereas the fifth comprised a feedlot and associated forage base developed as a greenfield site. The field evaluation was conducted over 4 years under more adverse environmental conditions than anticipated with below average rainfall and restrictions on irrigation. For the grazed systems, mean annual milk yield per cow ranged from 6330 kg/year (1.9 cows/ha) for a herd based on rain-grown tropical pastures to 7617 kg/year (3.0 cows/ha) where animals were based on temperate and tropical irrigated forages. For the feedlot herd, production of 9460 kg/cow.year (4.3 cows/ha of forage base) was achieved. For all herds, the level of production achieved required annual inputs of concentrates of ~3 t DM/animal and purchased conserved fodder from 0.3 to 1.5 t DM/animal. This level of supplementary feeding made a major contribution to total farm nutrient inputs, contributing 50% or more of the nitrogen, phosphorus and potassium entering the farming system, and presents challenges to the management of manure and urine that results from the higher stocking rates enabled. Mean annual milk production for the five systems ranged from 88 to 105% of that predicted by the desktop modelling. This level of agreement for the grazed systems was achieved with minimal overall change in predicted feed inputs; however, the feedlot system required a substantial increase in inputs over those predicted. Reproductive performance for all systems was poorer than anticipated, particularly over the summer mating period. We conclude that the desktop model, developed as a rapid response to assist farmers modify their current farming systems, provided a reasonable prediction of inputs required and milk production. Further model development would need to consider more closely climate variability, the limitations summer temperatures place on reproductive success and the feed requirements of feedlot herds.


Sign in / Sign up

Export Citation Format

Share Document