scholarly journals Vitamin A and carotenoid status in rural China

1996 ◽  
Vol 76 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Guangya Wang ◽  
Thierry A. Brun ◽  
Catherine A. Geissler ◽  
Banoo Parpia ◽  
Martin Root ◽  
...  

Vitamin A status of 260 groups of twenty-five males or twenty-five females, aged 35–64 years, surveyed in twenty-four provinces of the People's Republic of China, was assessed by measuring plasma retinol, retinol-binding protein and β-carotene concentrations. Direct measurements of food intake over a 3 d period and questionnaire data on the frequency of consumption of vegetables, fruit, animal products and other dietary items were also used. Vitamin A status appeared to be low only in specific counties but in general was satisfactory or only marginally deficient. Plasma harotene levels were strikingly low in comparison with Western levels despite generous vegetable consumption suggwg that intake of vitamin A precursors may have been adequate but not abundant enough to maintain high circulating plasma levels of β-carotene. Plasma β-carotene, for both males and females, was significantly correlated with the frequency of consumption of green vegetables. Plasma retinol, for males, was highly correlated with meat, fish, oil and alcohol consumption expresPed both in quantity or frequency of consumption. Higher levels of plasma retinol, together with lower levels of plasma β-carotene in males compared with females, suggest that men consume more animal products or may have higher retinol requirements and therefore a higher rate of conversion of β-carotene to retinol.

2000 ◽  
Vol 83 (5) ◽  
pp. 513-520 ◽  
Author(s):  
Suzanne M. Filteau ◽  
Juana F. Willumsen ◽  
Keith Sullivan ◽  
Karin Simmank ◽  
Mary Gamble

The ratio plasma retinol-binding protein (RBP) : transthyretin (TTR) has been proposed as a means to improve the assessment of vitamin A status of individuals with concurrent infection or inflammation. We have measured RBP and TTR in stored sera from South African children who had accidentally ingested kerosene. Samples were collected from these children in hospital when suffering acute inflammation and respiratory distress, and from them and neighbourhood control children 3 months later. Vitamin A status was defined by modified relative dose response (MRDR) tests of liver retinol stores at 3 months and by serum retinol concentration both when children were ill and when they were well. Illness was defined as either being in hospital or, at follow-up, as having a raised plasma α1-acid glycoprotein (AGP) level. The RBP : TTR value was significantly decreased by both illness and low liver retinol stores. When the effects on RBP : TTR of illness and vitamin A stores were considered together for the 3-month follow-up samples, only vitamin A status significantly decreased the value. We calculated sensitivity and specificity of the RBP : TTR ratio against established measures of vitamin A status using a cut-off value of 0·3 for RBP : TTR and standard cut-off values for MRDR (0·06) and plasma retinol (0·7 μmol/l). Compared with MRDR, RBP : TTR had sensitivities of 76 % and 43 % and specificities of 22 % and 81 % to detect vitamin A deficiency in hospitalized and well children respectively. Compared with plasma retinol, sensitivities were 88 % and 44 % and specificities were 55 % and 64 % in hospitalized and well children respectively. Only for the case of clinically well children with biochemical evidence of subclinical inflammation did sensitivity (62 % and 100 % against MRDR and plasma retinol respectively) and specificity (100 % and 60 % against MRDR and retinol) approach useful levels for an assessment tool. Overall, although a trend supporting the theory behind the use of the RBP : TTR for assessment of vitamin A status in infection was observed in the current study, the ratio did not provide adequate sensitivity and specificity to be a useful assessment tool.


1999 ◽  
Vol 58 (2) ◽  
pp. 449-457 ◽  
Author(s):  
David I. Thurnham ◽  
Christine A. Northrop-Clewes

There are two major dietary sources of vitamin A: easily absorbed retinyl palmitate in foods of animal origin, and poorly bioavailable carotenoids from plant foods. Plasma retinol is tightly controlled, probably by regulation of retinol-binding protein (RBP) formation in the liver, and only hormonal factors (e.g. oral contraceptives) and infection will alter the homeostasis. Delivery of retinol to the tissues is facilitated by the RBP-retinol complex; however, there is evidence that this mechanism can be bypassed when very high doses of vitamin A are given. Some retinyl ester may be released to tissues from chylomicrons when the latter bind to tissue lipoprotein receptors during their passage from the gut to the liver following a meal. High-dose vitamin A therapy is a means of rapidly improving vitamin A status in persons with sub-optimal vitamin A nutrition but there are dangers of toxic symptoms (e.g. teratogenicity) from excess vitamin A usage. Evidence is presented to suggest that the plasma retinol : RBP may be a guide to optimal vitamin A status, since values less than one frequently occur in less-developed countries and during infection. In contrast to plasma retinol, plasma carotenoids reflect the dietary intake of plant foods. However, absorption is limited by poor bioavailability and a saturable uptake mechanism in competition with other phytochemicals. Recent work on bioavailability suggests that the calculation of plant food vitamin A activity should be re-examined. Illness has little influence on plasma levels except by suppressing appetite. Carotenoids are generally regarded as non-toxic yet intervention studies with β-carotene in smokers have been associated with increased lung cancer and heart disease. Some carotenoids are important as vitamin A precursors, but the physiological importance of their antioxidant properties is not known and consequently the amount needed for optimal nutrition is uncertain.


2021 ◽  
pp. 153537022098547
Author(s):  
Ralph D Whitehead ◽  
Nicole D Ford ◽  
Carine Mapango ◽  
Laird J Ruth ◽  
Ming Zhang ◽  
...  

Retinol-binding protein (RBP), retinol, and modified-relative-dose response (MRDR) are used to assess vitamin A status. We describe vitamin A status in Ugandan children and women using dried blood spot (DBS) RBP, serum RBP, plasma retinol, and MRDR and compare DBS-RBP, serum RBP, and plasma retinol. Blood was collected from 39 children aged 12–23 months and 28 non-pregnant mothers aged 15–49 years as a subsample from a survey in Amuria district, Uganda, in 2016. DBS RBP was assessed using a commercial enzyme immunoassay kit, serum RBP using an in-house sandwich enzyme-linked immunosorbent assay, and plasma retinol/MRDR test using high-performance liquid chromatography. We examined (a) median concentration or value (Q1, Q3); (b) R2 between DBS-RBP, serum RBP, and plasma retinol; and (c) Bland-Altman plots. Median (Q1, Q3) for children and mothers, respectively, were as follows: DBS-RBP 1.15 µmol/L (0.97, 1.42) and 1.73 (1.52, 1.96), serum RBP 0.95 µmol/L (0.78, 1.18) and 1.47 µmol/L (1.30, 1.79), plasma retinol 0.82 µmol/L (0.67, 0.99) and 1.33 µmol/L (1.22, 1.58), and MRDR 0.025 (0.014, 0.042) and 0.014 (0.009, 0.019). DBS RBP-serum RBP R2 was 0.09 for both children and mothers. The mean biases were −0.19 µmol/L (95% limits of agreement [LOA] 0.62, −0.99) for children and −0.01 µmol/L (95% LOA −1.11, −1.31) for mothers. DBS RBP-plasma retinol R2 was 0.11 for children and 0.13 for mothers. Mean biases were 0.33 µmol/L (95% LOA −0.37, 1.03) for children, and 0.29 µmol/L (95% LOA −0.69, 1.27) for mothers. Serum RBP-plasma retinol R2 was 0.75 for children and 0.55 for mothers, with mean biases of 0.13 µmol/L (95% LOA −0.23, 0.49) for children and 0.18 µmol/L (95% LOA −0.61, 0.96) for mothers. Results varied by indicator and matrix. The serum RBP-retinol R2 for children was moderate (0.75), but poor for other comparisons. Understanding the relationships among vitamin A indicators across contexts and population groups is needed.


1997 ◽  
Vol 78 (5) ◽  
pp. 775-784 ◽  
Author(s):  
D. I. Thurnham ◽  
C. A. Northrop-Clewes ◽  
P. I. Paracha ◽  
U. J. McLoone

Recent evidence suggests that plasma lutein is better correlated than either β-carotene or lycopene with its respective carotenoid intake and therefore may be a better marker of vegetable intake than either β-carotene or lycopene. In the study reported in this paper, measurements of plasma carotenes and retinol were made in infants from two villages near Peshawar in the North West Frontier Province, Pakistan, in July and November 1993. The approximate age at the start was 14 months, and 101 boys and ninety girls completed the study. Of the usual plasma carotenes, only lutein was measurable in all samples and was correlated with retinol in both boys (r0.38,P< 0.0001;r0.35,P< 0.001) and girls (r0.21,P= 0.038;r0.307,P= 0.003) at the two time points respectively. In addition, the change in lutein was even more strongly correlated with the change in retinol in both boys (r0.453,P<0.0001) and girls (r0.439,P< 0.0001). In August β-carotene was measurable in approximately 8 % of samples and this increased to 31 % in November but there was no correlation between β-carotene and retinol at any time. There were negligible amounts of lycopene and β-cryptoxanthin in plasma at both time points. The mean concentration of plasma retinol in the infants was 0.66 μmol/l at baseline and 59 % of the infants had retinol concentrations < 0.7 μmol/l. In addition, there were fifteen infants whose levels were below 0.35 μmol/l suggesting that vitamin A status in the population was marginal. Food intake of the infants was not monitored in the present study but breast feeding continues for up to 2 years in this part of Pakistan and most infants would be weaned onto selected foods eaten by the family. The close correlation between plasma lutein and retinol suggests that the increase in retinol over the summer season may be attributable to an increased availability of green vegetables to the families. The source of lutein to the infants is most likely to be the breast milk since such vegetables are unlikely to be given to infants except to suck as a weaning food. The results may indicate the potential usefulness of plasma lutein as a marker of changes in vegetable intake and changes in vitamin A status in Third World infants and children.


2009 ◽  
Vol 102 (3) ◽  
pp. 342-349 ◽  
Author(s):  
Julie A. Howe ◽  
Bussie Maziya-Dixon ◽  
Sherry A. Tanumihardjo

Efforts to increase β-carotene in cassava have been successful, but the ability of high-β-carotene cassava to prevent vitamin A deficiency has not been determined. Two studies investigated the bioefficacy of provitamin A in cassava and compared the effects of carotenoid content and variety on vitamin A status in vitamin A-depleted Mongolian gerbils (Meriones unguiculatus). Gerbils were fed a vitamin A-free diet 4 weeks prior to treatment. In Expt 1, treatments (ten gerbils per group) included 45 % high-β-carotene cassava, β-carotene and vitamin A supplements (intake matched to high-β-carotene cassava group), and oil control. In Expt 2, gerbils were fed cassava feeds with 1·8 or 4·3 nmol provitamin A/g prepared with two varieties. Gerbils were killed after 4 weeks. For Expt 1, liver vitamin A was higher (P < 0·05) in the vitamin A (1·45 (sd 0·23) μmol/liver), lower in the control (0·43 (sd 0·10) μmol/liver), but did not differ from the β-carotene group (0·77 (sd 0·12) μmol/liver) when compared with the high-β-carotene cassava group (0·69 (sd 0·20) μmol/liver). The bioconversion factor was 3·7 μg β-carotene to 1 μg retinol (2 mol:1 mol), despite 48 % cis-β-carotene [(Z)-β-carotene] composition in cassava. In Expt 2, cassava feed with 4·3 nmol provitamin A/g maintained vitamin A status. No effect of cassava variety was observed. Serum retinol concentrations did not differ. β-Carotene was detected in livers of gerbils receiving cassava and supplements, but the cis-to-trans ratio in liver differed from intake. Biofortified cassava adequately maintained vitamin A status and was as efficacious as β-carotene supplementation in the gerbil model.


1992 ◽  
Vol 68 (1) ◽  
pp. 283-291 ◽  
Author(s):  
Clive E. West ◽  
S. Reinder Sijtsma ◽  
Harry P. F. Peters ◽  
Jan H. W. M. Rombout ◽  
Akke J. Van Der Zijpp

Marginally vitamin A-deficient 1-d-old chickens capable of remaining healthy for at least 6 weeks were produced using a two-generation model. In this model, hens fed on diets with a limited vitamin A content were used to obtain 1-d-old chickens which were marginally deficient in vitamin A. Only hens with a narrow range of plasma retinol values (0.60–0.85 μmol/l) were satisfactory for this purpose. Above this range the 1-d-old chickens were not marginally vitamin A deficient. Below this range egg production and hatchability were affected to some extent depending on the degree of vitamin A deficiency. Even when egg production and hatchability remained at a high level in such birds, the 1-d-old chickens produced were not sufficiently strong to survive the first weeks of life. The advantages of the two-generation model for producing marginally vitamin A-deficient chickens are the increased uniformity and predictability of the chickens with respect to body-weight, general health and vitamin A status. However, it does take about 3 months to produce such chickens.


Sign in / Sign up

Export Citation Format

Share Document