scholarly journals Iron loading and large doses of intravenous ascorbic acid promote lipid peroxidation in whole serum in guinea pigs

2001 ◽  
Vol 85 (6) ◽  
pp. 681-687 ◽  
Author(s):  
Maria Kapsokefalou ◽  
Dennis D Miller

Large doses of ascorbic acid may mobilise Fe from Fe-binding proteins in vivo which in turn could catalyse lipid peroxidation, a process associated with degenerative diseases. This hypothesis was tested in vitro in the serum of Fe-loaded animals. Eighteen male guinea pigs weighing about 500 g on arrival were allocated to two groups of nine. Fe loading was induced in one group by two intraperitoneal injections of 200 mg iron dextran given on days 1 and 5. Blood (6 ml) was drawn from all animals on day 12 by cardiac puncture. Serum and LDL were separated. Serum was tested for loosely-bound Fe (bleomycin assay) and lipid peroxidation (thiobarbituric acid reactive substances (TBARS) assay) and LDL for susceptibility to in vitro oxidation (TBARS and conjugated diene assays). On day 12, another intraperitoneal injection of 200 mg iron dextran was given to the animals in the Fe-loaded group. On day 19, all animals were given 75 mg ascorbic acid by intraperitoneal injection. Blood (6 ml) was drawn 4 h later by cardiac puncture. Serum and LDL assays were repeated. Ascorbic acid increased loosely-bound Fe and in vitro oxidation in the serum from animals of the Fe-loaded group but not in the serum from animals of the control group. Susceptibility of LDL to in vitro oxidation increased after the ascorbic acid injection in the control group but there was no further increase in the Fe-loaded group. These data suggest that large doses of ascorbic acid promote Fe mobilisation and in vitro oxidation in the serum of Fe-loaded animals.

2019 ◽  
Vol 44 (3) ◽  
pp. 239-247
Author(s):  
Mbarka Hfaiedh ◽  
Dalel Brahmi ◽  
Mohamed Nizar Zourgui ◽  
Lazhar Zourgui

Environmental and occupational exposure to chromium compounds, especially hexavalent chromium, is widely recognized as potentially nephrotoxic in humans and animals. The present study aimed to assess the efficacy of cactus (Opuntia ficus-indica) against sodium dichromate-induced nephrotoxicity, oxidative stress, and genotoxicity. Cactus cladodes extract (CCE) was phytochemically studied and tested in vitro for its potential antioxidant activities. Additionally, the preventive effect of CCE against sodium dichromate-induced renal dysfunction in a Wistar rat model (24 rats) was evaluated. For this purpose, CCE at a dose of 100 mg/kg was orally administered, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the kidneys were excised for histological, lipid peroxidation, and antioxidant enzyme analyses. The phenol, flavonoid, tannin, ascorbic acid, and carotenoid contents of CCE were considered to be important. Our analyses showed that 1 mL of CCE was equivalent to 982.5 ± 1.79 μg of gallic acid, 294.37 ± 0.84 μg of rutin, 234.78 ± 0.24 μg of catechin, 204.34 ± 1.53 μg of ascorbic acid, and 3.14 ± 0.51 μg of β-carotene. In vivo, pretreatment with CCE was found to provide significant protection against sodium dichromate-induced nephrotoxicity by inhibiting lipid peroxidation, preserving normal antioxidant activities, and protecting renal tissues from lesions and DNA damage. The nephroprotective potential of CCE against sodium dichromate toxicity might be due to its antioxidant properties.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Weerakoon Achchige Selvi Saroja Weerakoon ◽  
Pathirage Kamal Perera ◽  
Dulani Gunasekera ◽  
Thusharie Sugandhika Suresh

Sudarshanapowder (SP) is one of the most effective Ayurveda powder preparations for paediatric febrile conditions. The objective of the present study was to evaluate thein vitroandin vivoantioxidant potentials of SP. Thein vitroantioxidant effects were evaluated using ABTS radical cation decolourization assay where the TROLOX equivalent antioxidant capacity (TEAC) was determined. Thein vivoantioxidant activity of SP was determined in Wistar rats using the Lipid Peroxidation (LPO) assay in serum. Thein vitroassay was referred to as the TROLOX equivalent antioxidant capacity (TEAC) assay. For thein vivoassay, animals were dosed for 21 consecutive days and blood was drawn to evaluate the MDA level. Thein vitroantioxidant activity of 0.5 μg of SP was equivalent to 14.45 μg of standard TROLOX. The percentage inhibition against the radical formation was50.93±0.53%. The SP showed a statistically significant (p<0.01) decrease in the serum level of thiobarbituric acid-reactive substance in the test rats when compared with the control group. These findings suggest that the SP possesses potent antioxidant activity which may be responsible for some of its reported bioactivities.


2007 ◽  
Vol 19 (1) ◽  
pp. 262 ◽  
Author(s):  
I. Dimitriadis ◽  
E. A. Rekka ◽  
E. Vainas ◽  
G. S. Amiridis ◽  
C. A. Rekkas

The substrates used in in vitro embryo production (IVP) mimic the in vivo fluids in which oocytes mature, oocytes are fertilized, and the early embryos develop (follicular and oviductal fluid). It is well established that oxidative stress negatively affects in vitro culture (IVC) outcomes. Guaiazulene (G) is a component of chamomile species oil with known antioxidant properties. In the present study, all IVP media were modified by the addition of G solutions so that the former exhibited a total protection against induced lipid peroxidation (TPaLP) similar to that of the respective in vivo environment. The IVP outcomes were then compared between G-processed and control oocytes. Bovine preovulatory follicular (BF) and oviductal (BO) fluid samples were collected from 10 Holstein 4- to 5-year-old cows in estrus. TPaLP was assessed according to the samples&apos; ability to inhibit rat hepatic microsomal lipid peroxidation, by determination of the 2-thiobarbituric acid reactive material. TPaLP (mean % � SEM) of the BF and BO were 70.63 � 10.03 and 16.33 � 4.33, respectively, whereas those of the IVP [in vitro-matured (IVM), in vitro-fertilized (IVF), and IVC] media were lower (17.94 � 1.66, -1.82 � 0.78, and 14.57 � 1.26, respectively). TPaLP of the 0.1 mM G-modified IVP medium increased to 67.2 � 5.85, 19.98 � 2.49, and 69.19 � 6.22, respectively. A total of 2041 class A oocytes were used. The proportion of cleavage, early embryo development (embryos with more than 4 cells), or both after IVP (18 h IVM–5% CO2 in air, and 18 h IVF, 48 h IVC–5% CO2, 10% O2, 85% N) in the presence of G (n = 1237) during each of the IVP phases or any possible combination of IVP phases was compared with the respective control (C, n = 804). Statistical analysis was performed by a chi-squared test; P &lt; 0.05 was considered significant. G improved cleavage and embryo development rates when present during IVM (79.4 and 57.8% vs. 64.5 and 38.2% for C) or both IVM and IVC (78.0 and 60.7% vs. 57.8 and 36.5%, respectively). When present only during 18 h of IVF, G had no effect on embryo production. However, an increased embryo development rate resulted from the combined exposure to G during IVF and IVM (56.4 vs. 29.6%), during IVF and IVC (55.3 vs. 35.5%), or at all IVP phases (56.6 vs. 34.9%). The latter effect resembled the one obtained after G addition only to the IVC medium (62.5 vs. 39.7%, respectively). We concluded that the addition of G to IVP substrates, at concentrations that mimic the in vivo TPaLP conditions, could promote bovine IVP efficiency.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Camila Carolina de Menezes Patrício Santos ◽  
Mirian Stiebbe Salvadori ◽  
Vanine Gomes Mota ◽  
Luciana Muratori Costa ◽  
Antonia Amanda Cardoso de Almeida ◽  
...  

The objective of the present study was to evaluate the antinociceptive effects of phytol using chemical and thermal models of nociception in mice and to assess its antioxidant effects in vitro. Phytol was administered intraperitoneally (i.p.) to mice at doses of 25, 50, 100, and 200 mg/kg. In the acetic acid-induced writhing test, phytol significantly reduced the number of contortions compared to the control group (P<0.001). In the formalin test, phytol reduced significantly the amount of time spent in paw licking in both phases (the neurogenic and inflammatory phases), this effect being more pronounced in the second phase (P<0.001). Phytol also provoked a significant increase in latency in the hot plate test. These antinociceptive effects did not impaire the motor performance, as shown in the rotarod test. Phytol demonstrated a strong antioxidant effect in vitro in its capacity to remove hydroxyl radicals and nitric oxide as well as to prevent the formation of thiobarbituric acid reactive substances (TBARS). Taken as a whole, these results show the pronounced antinociceptive effects of phytol in the nociception models used, both through its central and peripheral actions, but also its antioxidant properties demonstrated in the in vitro methods used.


1967 ◽  
Vol 21 (3) ◽  
pp. 671-679 ◽  
Author(s):  
M. A. Cawthorne ◽  
A. T. Diplock ◽  
I. R. Muthy ◽  
J. Bunyan ◽  
Elspeth A. Murrell ◽  
...  

1. Vitamin E-deficient rats were found to be more susceptible than vitamin E-supplemented controls to the toxic effects of hyperbaric oxygen (60 lb/in.2 for 20 min). This agrees with the findings of other workers.2. Hyperbaric O2 treatment did not increase the metabolic destruction of a small amount (46.65 μg) of [14C-5-Me]D-α-tocopherol given to adult vitamin E-deficient rats 24 h previously. The O2 treatment also did not affect the soluble sulphydryl compounds and ascorbic acid of rat liver, nor the percentag haemolysis in vivo of rat blood.3. Hyperbaric O2 treatment did not increase the true lipid peroxide content of rat brain, compared to control rats treated with hyperbaric air, which has no toxic effects. Increases in ‘lipid peroxidation’ reported by previous workers are considered to have been due to the use of inadequate controls (untreated rats) and of in vitro techniques that are open to criticism.4. The toxic effects of hyperbaric O2 in the vitamin E-deficient rat cannot be attributed to peroxidation in vivo.5. Vitamin E was not found to protect rats against the effects of reduced O2 tension (anoxic anoxia). This finding contrasts with some reports by earlier workers. Reduced O2 tension had no effect on the metabolism of radioactive tocopherol, on blood haemolysis in vivo, or on the soluble sulphydryl compounds and ascorbic acid of liver.


2009 ◽  
Vol 59 (3) ◽  
pp. 325-334 ◽  
Author(s):  
Sarbani Ray ◽  
Partha Roy ◽  
Supratim Ray

Sterodin®, a novel immunostimulating drug: Some toxicological and pharmacological evaluations in vivo, and drug-lipid interaction studies in vitro Sterodin® is a novel non-specific immunostimulating drug produced by a combination of bile lipids and bacterial metabolites. In the present study, we investigated some of its (i) toxicological and (ii) pharmacological properties in vivo, and (iii) drug-lipid interaction (lipid peroxidation) in vitro. We also evaluated the possible (iv) Sterodin®-induced lipid peroxidation as well as the effect of ascorbic acid on this peroxidation. We found LD50 of Sterodin® to be 31.50 mL kg-1 body mass. In male albino mice, Sterodin® increased the total white blood cells and neutrophils count by 59 and 26%, respectively, on the 6th day, compared to day 0 after injection and stimulated phagocytic activity in vivo. We used goat liver as lipid source in drug-lipid interaction studies in vitro. Our experiments show that Sterodin® induces lipid peroxidation, which was prevented by ascorbic acid.


2007 ◽  
Vol 77 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Karppi ◽  
Rissanen ◽  
Nyyssönen ◽  
Kaikkonen ◽  
Olsson ◽  
...  

Astaxanthin, the main carotenoid pigment in aquatic animals, has greater antioxidant activity in vitro (protecting against lipid peroxidation) and a more polar configuration than other carotenoids. We investigated the effect of three-month astaxanthin supplementation on lipid peroxidation in healthy non-smoking Finnish men, aged 19–33 years by using a randomized double-blind study design. Also absorption of astaxanthin from capsules into bloodstream and its safety were evaluated. The intervention group received two 4-mg astaxanthin (Astaxin®) capsules daily, and the control group two identical-looking placebo capsules. Astaxanthin supplementation elevated plasma astaxanthin levels to 0.032 μmol/L (p < 0.001 for the change compared with the placebo group). We observed that levels of plasma 12- and 15-hydroxy fatty acids were reduced statistically significantly in the astaxanthin group (p = 0.048 and p = 0.047 respectively) during supplementation, but not in the placebo group and the change of 15-hydroxy fatty acid was almost significantly greater (p = 0.056) in the astaxanthin group, as compared with the placebo group. The present study suggests that intestinal absorption of astaxanthin delivered as capsules is adequate, and well tolerated. Supplementation with astaxanthin may decrease in vivo oxidation of fatty acids in healthy men.


2021 ◽  
Author(s):  
Yanlin Li ◽  
Kun Wang ◽  
Chuan He ◽  
Guoliang Wang ◽  
Guofeng Cai ◽  
...  

Abstract In order to investigate the effect of TN14003 and its mechanism on cartilage degeneration in vitro and in vivo. P1 chondrocytes isolated from cartilage tissues of OA patients who underwent total knee arthroplasty were randomly assigned to blank control group, TN14003 group, T140 group, and AMD3100 group in vitro. Each group cells were cultured for 1, 2, 4, 6, 8, 10 days. Cell morphology were observed under inverted phase-contrast microscope and examined using MTT assay, flow cytometry, ELISA (MMPs in the chondrocyte medium) and quantitative real-time PCR (mRNA expressions of Col II and ACAN). Moreover, 96 male Hartley guinea pigs with spontaneous OA were randomly assigned to examine the effect of TN14003, T140, and AMD3100 in vivo. After 12 weeks, guinea pigs were sacrificed, the knee articular cartilage histopathology was analyzed. No difference in morphology, proliferation rate and apoptosis among four groups (P > 0.05). The content of MMP-3 and MMP-13, mRNA expression levels of ACAN and Col II were significantly lower in TN14003 group compared with other groups (P < 0.05). TN14003 had stronger effect in decreasing cartilage degeneration compared with T140 and AMD3100 in vivo. TN14003 could effective targeted to prevention and treatment of OA.


2008 ◽  
Vol 78 (45) ◽  
pp. 217-222 ◽  
Author(s):  
Wissam H. Ibrahim ◽  
Hosam M. Habib ◽  
Ching K. Chow ◽  
Geza G. Bruckner

The purpose of this study was to determine if an isoflavone-rich soy isolate affords protection against peroxidative damage in vivo. Weanling C57BL6 male mice were fed a basal diet (AIN-93G) supplemented with either nothing or 1.08 gram isoflavone-rich soy isolate/kg diet for 60 days. The soy isolate contained 400 mg/g isoflavone aglycones (226 mg/g genistein and 174 mg/g daidzein). Immediately following sacrifice liver was processed for measuring the levels of lipid peroxidation products, malondialdehyde (MDA) and conjugated dienes, and the levels of α-tocopherol, glutathione (GSH), and ascorbic acid, as well as the activities of catalase, selenium-dependent glutathione peroxidase (Se-GPx), selenium-nondependent glutathione peroxidase (non-Se-GPx), and superoxide dismutase (SOD). Compared with the control group, mice fed the diet supplemented with soy isolate had significantly (p < 0.05) lower hepatic levels of MDA and conjugated dienes. The activities of catalase and SOD were significantly increased (p < 0.05) in the liver of soy isolate-supplemented mice. The levels of vitamin E, GSH, and ascorbic acid and the activities of Se-GPx and non-Se-GPx were not significantly altered by the soy isolate. The results obtained provide experimental evidence that isoflavone supplementation confers protection against peroxidative damage to membrane lipids in vivo, possibly through enhancing the activities of the antioxidant enzymes catalase and SOD.


2008 ◽  
Vol 5 (1) ◽  
pp. 55-59 ◽  
Author(s):  
P. Chaturvedi

In the present study, inhibitory effect of the methanol extract ofRaphanus sativusroot on lipid peroxidation has been carried out in normal rats. Graded doses of methanol extract of root of the plant (40, 80 and 120 mg kg−1body weight) were administered orally for 15 days to experimental treated rats. Distilled water was administered to experimental control rats. At the end of experiment, rats were killed by decapitation after ether anesthesia. Blood and liver were collected to measure thiobarbituric acid reactive substance, reduced glutathione and activity of catalase. Results indicated that the extract ofR. sativusroot reduced the levels of thiobarbituric acid reactive substance significantly in all experimental treated groups (P < 0.05) as compared to the experimental control group. It also increased the levels of reduced glutathione and increased the activity of catalase.In vitroexperiments with the liver of experimental control and experimental treated rats were also carried out against cumene hydroperoxide induced lipid peroxidation. The extract inhibitedin vitrocumene hydroperoxide induced lipid peroxidation.R. sativusinhibits lipid peroxidationin vivoandin vitro. It provides protection by strengthening the antioxidants like glutathione and catalase. Inclusion of this plant in every day diet would be beneficial.


Sign in / Sign up

Export Citation Format

Share Document