The Influence of Different Protein Supply and Feeding Level on pH, Ammonia Concentration and Microbial Protein Synthesis in the Rumen of Cows

1988 ◽  
Vol 38 (1) ◽  
pp. 115-125 ◽  
Author(s):  
J⊘rgen Madsen ◽  
Torben Hvelplund
2007 ◽  
Vol 2007 ◽  
pp. 216-216
Author(s):  
Yashar Vakil Faraji ◽  
Mojtaba Zahedifar ◽  
Jafari Khorshidi Kaveh

Rumen microbes are rich in nucleic acid: around 18% of total nitrogen is present on nucleic acids or 11% in purines. Rumen microbes constitue the major source of protein supply to the ruminant. The purines from the rumen microbes are metabolized and excreted in the urine as their end products: hypoxanthine, xanthine, uric acid and allantoin. In buffalo and cattle because of high xanthine oxidase activity in intestine and blood, hypoxanthine and xanthine convert to uric acid therefore only uric acid and allantoin excreted in urine way (Chen, X. B., Ørskov, E. R., 2003). This research carried out to use excretion of purine derivatives namely allantoin and uric acid as a parameter to estimate the microbial protein synthesis in the rumen of native swamp buffalo in north of iran, Mazandaran Province.


2000 ◽  
Vol 71 (2) ◽  
pp. 369-379 ◽  
Author(s):  
R. G. Wilkinson ◽  
L. A. Sinclair ◽  
J. Powles ◽  
C. M. Minter

AbstractThe response of lactating ewes grazing grass to variations in effective rumen degradable protein (ERDP) and digestible undegradable protein (DUP) supply from concentrates was investigated. During the spring and early summer of 1993, 36 Friesland and 12 Finn Dorset ewes were offered continuous access to permanent pasture (Lolium perenne) and allocated to one of six concentrates (1·2 kg/day) formulated to be iso-energetic and to supply 149 (H), 126 (M) or 103 (L) g ERDP and 70 (A) or 45 (B) g DUP per kg dry matter (DM) in a 3 ✕ 2 factorial design. Herbage intake was estimated using the n-alkane technique and herbage samples obtained for analysis. Ewe milk yields, milk composition, live weights (LW) and condition scores (CS) were recorded weekly. The DM and nitrogen degradability characteristics of the grass samples and concentrates were determined using four Friesland wether lambs fitted with permanent rumen cannulae. Throughout the experiment the grass ERDP: FME ratio was lower than the optimum for maximal microbial protein synthesis. However, using a rumen solid phase outflow rate of 0·05 per h, estimated concentrate ERDP and DUP supplies were similar to those predicted. Increasing concentrate ERDP supply had no effect on herbage intake or LW and CS change but reduced milk fat concentration (P < 0·05) and increased milk lactose concentration (P < 0·05) and the yields of milk (P < 0·01), protein (P < 0·05) and lactose (P < 0·01). There were no significant effects of concentrate DUP supply. In conclusion, it is suggested that concentrate ERDP increased microbial protein synthesis and metabolizable protein supply, a proportion of which may have been deaminated to provide precursors for milk lactose synthesis, such that the marginal response in milk protein yield was 0·210.


2022 ◽  
Vol 951 (1) ◽  
pp. 012004
Author(s):  
S Nayohan ◽  
K G Wiryawan ◽  
A Jayanegara

Abstract The aim of this study was to determine the effect of coating urea by chitosan at graded levels on ammonia concentration and rumen fermentation in vitro. This study used Factorial Randomized Complete Block Design (RCBD) to test ammonia parameter and Randomized Complete Block Design (RCBD) for pH, microbial protein synthesis, dry matter and organic matter digestibility, and Volatile Fatty Acid (VFA). The treatments tested were: P0 = addition non coating urea 1%; P1 = coating urea by chitosan 1%; P2 = coating urea by chitosan 2%; P3 = coating urea by chitosan 3%. The data obtained were analysed by using ANOVA and continued with Tukey HSD test with SPSS version 25. The results of this study showed that the coating of urea chitosan had no significant effect on pH, dry matter and organic matter digestibility, microbial protein synthesis, and amonia concentration in the rumen. However, it significantly reduced (P <0.05) total VFA concentration. It can be concluded that the application of urea coating by chitosan does not affect on the degradation of urea in the rumen.


2021 ◽  
Vol 14 (3) ◽  
pp. 640-648
Author(s):  
Ezi Masdia Putri ◽  
Mardiati Zain ◽  
Lili Warly ◽  
Hermon Hermon

Background and Aim: Feeding ruminants must notice the degradability of feed, especially protein. Microbial rumen requires ammonia from rumen degradable protein (RDP) beside that ruminant require bypass protein or rumen undegradable protein (RUP) and microbial crude protein. The aim of the study was to discover the best RDP:RUP ratio in beef cattle diets commonly used by Indonesian farmers using an in vitro methodology. Materials and Methods: Samples of Pennisetum purpureum, Leucaena leucocephala, Indigofera zollingeriana, cassava, maize, palm kernel cake, rice bran, and tofu waste were formulated into dietary treatments (dry matter [DM] basis). All experiments were carried out using a 3×3×2 factorial, randomized block design with three replications. Treatments consisted of three protein levels (12%, 14%, and 16%), two energy levels (65% and 70%), and three RDP:RUP ratio levels (55:45, 60:40, and 65:35). The experimental diets were incubated in vitro using buffered rumen fluid for 48 h at 39°C. After incubation, the supernatants were analyzed to determine pH, ammonia concentration, total volatile fatty acid (VFA), and microbial protein synthesis. The residues were analyzed to determine DM, organic matter, protein, and RUP digestibility. Results: Increased protein, energy, and RDP levels increased digestibility, ammonia concentrations, total VFAs, and microbial protein synthesis (p<0.05), while rations with 16% protein lowered these parameters (p<0.05). Conclusion: Increased dietary protein (from 12% to 14% DM), energy (from 65% to 70% DM), and RDP (from 55% to 65% crude protein [CP]) levels increased nutrient digestibility, ammonia concentration, total VFA levels, and microbial protein synthesis. The diet containing 14% DM dietary protein and 70% DM energy, which contained 55%, 60%, or 65% CP RDP optimally increased nutrient digestibility, ammonia concentration, total VFA levels, and microbial protein synthesis. Thus, feed based on these RDP:RUP ratios can optimize ruminant productivity.


Sign in / Sign up

Export Citation Format

Share Document