Wood density at breast height as estimate of the whole tree density inGrevillea robusta

2016 ◽  
Vol 79 (3) ◽  
pp. 168-170
Author(s):  
Mariano Agustín Hernández ◽  
Pabla Yolanda Genes
2011 ◽  
Vol 60 (1-6) ◽  
pp. 224-232
Author(s):  
A. Fries ◽  
T. Mörling

Abstract Twelve trees in a 36 year old full-sib progeny plantation, testing a part of the Scots pine breeding population, were analysed for wood density and the width of the earlywood and latewood sections in each annual ring. Wood samples (stem discs) were taken with 1 m intervals along the stem and the analyses covered thus the whole stem. Based on these data, the biomass of the earlywood and latewood of each annual ring in each 1 meter stem section was estimated. Latewood density increased from pith to bark while it decreased from stem base to top. Earlywood density was of similar size both radially and vertically. The biomass in each annual ring increased until around ring number 10 from pith for both wood types. For earlywood it then decreased while it remained quite constant for latewood. Latewood biomass decreased more rapidly towards the top of the tree than earlywood biomass. Heritabilities for earlywood and latewood in each annual ring at breast height (estimated in the same material in a previous study) were related to the corresponding biomasses to indirectly estimate overall heritability for wood density valid for the whole stem. The analyses indicate that the decrease in heritability for latewood density and increase for earlywood density, from the pith to bark, is compensated by the increase in latewood biomass in relation to earlywood biomass. Thus, the heritability of the latewood density and earlywood density seems to have the same influence on the overall heritability for density in the whole stem.


2021 ◽  
pp. 97-105

Background: The current challenge is to reduce the uncertainties in obtaining accurate and reliable data of carbon stock changes and emission factors essential for reporting national inventories. Improvements in above ground biomass estimation can also help account for changes in carbon stock in forest areas that may potentially participate in the Reducing emissions from deforestation and forest degradation and other initiatives. Current objectives for such estimates need a unified approach which can be measurable, reportable, and verifiable. This might result to a geographically referenced biomass density database for Sudanese forests that would reduce uncertainties in estimating forest aboveground biomass. The main objective: of this study is to assess potential of some selected forest variables for modeling carbon sequestration for Acacia seyal, vr. Seyal, Acacia seyal, vr. fistula, Acacia Senegal. The specific objectives include development of empirical allometric models for forest biomass estimation, estimation of carbon sequestration for these tree species, estimation of carbon sequestration per hectare and comparing the amount with that reported to the region. A total of 10 sample trees for biomass and carbon determination were selected for each of the three species from El Nour Natural Forest Reserve of the Blue Nile State, Sudan. Data of diameter at breast height, total tree height, tree crown diameter, crown height, and upper stem diameters were measured. Then sample trees were felled and sectioned to their components, and weighed. Subsamples were selected from each component for oven drying at 105 ˚C. Finally allometric models were developed and the aboveground dry weight (dwt) and carbon sequestered per hector were calculated. The results: presents biomass equations, biomass expansion factor and wood density that developed for the trees. In case of inventoried wood volume, corrections for biomass expansion factor and wood density value were done, and new values are suggested for use to convert wood volume to biomass estimates. The results also, indicate that diameter at breast height, crown diameter and tree height are good predictors for estimation of tree dwt and carbon stock. Conclusion: The developed allometric equations in this study gave better estimation of dwt than default value. The average carbon stock was found to be 22.57 t/ha.


1981 ◽  
Vol 57 (4) ◽  
pp. 169-173 ◽  
Author(s):  
I. S. Alemdag ◽  
K. W. Horton

Ovendry mass of single trees of trembling aspen, largetooth aspen, and white birch in the Great Lakes — St. Lawrence and Boreal forest regions in Ontario was studied in relation to stem dimensions. Mass equations for tree components based on diameter at breast height outside bark and tree height were developed. Results were found more dependable for stem wood and the whole tree than for stem bark, live branches, and twigs plus leaves. Ovendry mass values were slightly higher than those reported for New York and northern Minnesota.


2010 ◽  
Vol 34 (2) ◽  
pp. 84-90 ◽  
Author(s):  
Michael J. Aspinwall ◽  
Bailian Li ◽  
Steven E. McKeand ◽  
Fikret Isik ◽  
Marcia L. Gumpertz

Abstract Models were developed for predicting whole-stem α-cellulose yield, lignin content, and wood density in 14- and 20-year-old loblolly pine across three different sites. Also, the relationships between juvenile-, transition-, and mature-wood α-cellulose yield, lignin content, and wood density at breast-height and overall whole-stem wood property values were examined. Whole-stem wood property weighted averages were calculated by taking 12-mm core samples at breast height and at 2.4-m incremental heights up each tree, and breast-height wood property values were then used to predict whole-stem weighted averages. Despite large differences in growth across sites and both ages, whole-stem models based on whole cores taken at breast height were not significantly different among sites, and coefficients of determination (R2) were 0.87, 0.74, and 0.78 for α-cellulose, lignin, and wood density, respectively. Generally, whole-stem prediction models based on sections of wood at breast height were not significantly different among sites and were less effective than cores as predictors, explaining between 39 and 82% of the variation in whole-stem wood traits. The results of this study indicate that the relationship between breast height and whole-stem wood chemical properties (and density) is predictable and consistent across sites in both juvenile and mature loblolly pine.


1994 ◽  
Vol 24 (3) ◽  
pp. 638-641 ◽  
Author(s):  
Jeffrey D. DeBell ◽  
John C. Tappeiner II ◽  
Robert L. Krahmer

Wood density of western hemlock (Tsugaheterophylla (Raf.) Sarg.) was determined by X-ray densitometry of strips from breast-height samples consisting of rings 20–24 from the pith. Ring parameters were averaged over the 5 years for each strip. Wood density was negatively correlated with radial growth rate. Average wood density dropped from 0.47 to 0.37 g/cm3 as average ring width increased from 2 to 8 mm. Wood density decreased at higher growth rates primarily because earlywood width increased while latewood width remained the same; as a result, percentage of latewood decreased. Earlywood density decreased slightly at higher growth rates, but latewood density was not significantly related to growth rate.


IAWA Journal ◽  
2001 ◽  
Vol 22 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Teresa Quilhó ◽  
Helena Pereira

Eucalyptus globulus trees, 15 years old, were sampled at different heights from commercial pulpwood plantations in two sites in Portugal. Bark thickness was higher in the site with better growth and always decreased from the tree base to the top. Bark content was site independent and on average 11% of stem dry weight, higher at the base and top, and lower at 35% height level.Tree mean wood basic density averaged 600 kg /m3 and 568 kg /m3 for best and worst site, respectively, and was not correlated with tree growth. Wood density increased from base to top of the tree. Between-tree variation was low with coefficients of variation of site mean below 10%. Bark density (374 kg /m3 and 454 kg /m3 for best and worst site, respectively) did not show significant within tree variation. Average tree wood density could not be predicted with reasonable accuracy using a breast height sampling and better results were obtained using a sampling as a percentage of total height (e.g. 15%).


1982 ◽  
Vol 58 (5) ◽  
pp. 220-224 ◽  
Author(s):  
I. S. Alemdag ◽  
W. M. Stiell

Data and wood samples were collected from 155 trees in 16 high-survival, unthinned plantations of red pine (Pinus resinosa Ait.) near Chalk River, Ontario, aged 27 to 54 years, with initial spacings of from 1.52 × 1.52 m to 4.27 × 4.27 m. Following standard weighing and drying procedures, ovendry mass values of the whole tree and or their individual components were calculated, and regressions developed to relate mass values to stem dimensions of diameter breast height (d) and total height (h), and to determine what effects the initial spacing and stand age had on those relations. Single-tree equations based simply on d and h gave satisfactory mass estimates only for the whole tree and for the component stem bark. For other components the addition of spacing and age showed successive improvements in the estimates over those provided by d2h alone.


2017 ◽  
Vol 47 (11) ◽  
pp. 1495-1505 ◽  
Author(s):  
Thomas L. Eberhardt ◽  
Joseph Dahlen ◽  
Laurence Schimleck

Composition of the southern pine forest is now predominated by two species, loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.), owing to fire suppression activities, natural regeneration on abandoned agricultural lands, and extensive planting. Comparison of the wood and bark physical properties of these pines is of interest in terms of the yields of usable biomass and, for the bark, its ecological functionality on a living tree. Trees from a species comparison study were used to generate wood and bark property data, on a whole-tree basis, and for stem disks collected at breast height. Models were constructed to explain the effect of relative height on wood and bark properties. When comparing the whole-tree data, slash pine wood (0.523 versus 0.498) and bark (0.368 versus 0.311) specific gravity values were higher, both offset by lower moisture contents; slash pine also produced a higher percentage of bark on a dry-mass basis (17% versus 12.5%). Unlike wood properties, bark properties showed significant between-species differences when determined at breast height alone, the exception being moisture content. In terms of yield, harvests of a green tonne of loblolly pine and slash pine would give approximately the same dry mass of wood, but slash pine provides more bark.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 445 ◽  
Author(s):  
Ewa Dobrowolska ◽  
Paulina Wroniszewska ◽  
Agnieszka Jankowska

The aim of the presented research is to perform a comprehensive analysis of wood density variability on the longitudinal and transverse cross-section of log trees at the age of 70 to 72 years of Betula pendula Roth. and the creation of density distribution maps. Furthermore, the determination proportion of juvenile and mature wood was done. Wood density was determined with a non-destructive method using an isotopic densimeter. It was found that the wood location, both in cross-section and longitudinal section of the trunk, had a statistically significant effect on the average density of birch wood. The average density of whole logs was significantly higher than the average density at the breast height. On the cross-section, the distribution of average densities determined at the breast height, as well as on ¼ of the log height, properly depicted the distribution of average densities on the cross-section determined for the whole logs. The geographical direction (north–south) did not have a statistically significant effect on the distribution of average densities on the cross-section of the tested birch logs.


Sign in / Sign up

Export Citation Format

Share Document