Thin film 0–3 polymer/piezoelectric ceramic composites: Piezoelectric paints

1989 ◽  
Vol 100 (1) ◽  
pp. 255-260 ◽  
Author(s):  
K. A. Hanner ◽  
A. Safari ◽  
R. E. Newnham ◽  
J. Runt
1995 ◽  
Author(s):  
Shoko Yoshikawa ◽  
R. Meyer ◽  
J. Witham ◽  
S. Y. Agadda ◽  
G. Lesieutre

2004 ◽  
Vol 261-263 ◽  
pp. 465-470
Author(s):  
Zheng Hua Qian ◽  
Feng Jin ◽  
Zi Kun Wang ◽  
Kikuo Kishimoto

Following the advances in structural applications, composite structures are being used commonly in transducer applications to improve acoustic, mechanical and electrical performance of piezoelectric devices. Functional composite transducers for sensors and actuators generally consist of ceramics and polymers, the disadvantage of the brittleness nature of the piezoelectric ceramics can be overcome and the structures especially good for sensing can be allowed for building up. Propagation behavior of horizontally polarized shear waves (SH-waves) in piezoelectric ceramic-polymer composites with 2-2 connectivity is taken into account. The multilayer structures are consisted of piezoelectric thin films bonded perfectly with polymeric thin films alternately. The phase velocity equations of SH-waves propagation in the piezoelectric ceramic-polymer composites with 2-2 connectivity are obtained for the cases of wave propagation in the direction perpendicular to the layering and along the layering, respectively. Filter effect of this kind of structure and the effect of volume fraction and shear modulus ratio of piezoelectric layer to polymer layer on the phase velocity are discussed in detail, respectively. One practical combination of piezoelectric thin film-polymer thin film multilayer system is chosen to carry out the numerical simulation, some basic properties of SH-waves propagation in above multilayered structures are revealed.


2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Tetsuro Yanaseko ◽  
Hiroshi Sato ◽  
Fumio Narita ◽  
Hiroshi Asanuma

AbstractThe mechanical characteristics of piezoelectric ceramic fibers can be improved by embedding the fibers in a metal matrix. The compressive stress generated during the embedding process, however, limits the polarization of piezoelectric ceramic composites. To study and determine the relationship between the mechanical and piezoelectric properties of piezoelectric ceramics, we analyzed the crystallographic orientation of piezoelectric ceramics embedded in an aluminum matrix via electron backscatter diffraction. The orientation of the crystals before and after the polarization of the piezoelectric fibers, in which residual stresses were generated during embedding, was evaluated. Furthermore, the residual stresses were reduced by heat treatment, and the resultant angle of orientation was evaluated before and after polarization. Results showed that, as the residual stresses were relieved, the orientation of the piezoelectric ceramic crystals changed to reveal increased polarization. Our analysis shows that the crystal orientation of piezoelectric ceramics is impacted by the residual compressive stress that arises from embedding the piezoelectric fiber in the aluminum matrix; it also illustrates the hindering effect of residual stress on the polarization of piezoelectric ceramics.


Author(s):  
I. Demir ◽  
R. F. Richards ◽  
D. F. Bahr ◽  
C. D. Richards

The mechanical behavior of a micromachined PZT membrane for power applications is investigated. The membrane is a bulk-micromachined silicon membrane that supports a thin film of piezoelectric ceramic (PZT) sandwiched between platinum and gold electrodes. The membrane undergoes large periodic deflections to convert mechanical power to electrical power in a micro heat engine. An analysis using a variational approach is developed to find an approximate closed from solution based on energy minimization. Experiments were conducted to obtain material properties, residual stresses, and pressure deflection relationships. The modeled results compare well to the experimental results.


Sign in / Sign up

Export Citation Format

Share Document