Direct conversion of thermal energy to electric energy by means of ferroelectric materials

1994 ◽  
Vol 153 (1) ◽  
pp. 347-352 ◽  
Author(s):  
J. A. Gonzalo ◽  
Y. L. Wang ◽  
B. Noheda ◽  
G. Lifante ◽  
M. Koralewski
Author(s):  
Motoaki Utamura ◽  
Yoshio Nishimura ◽  
Akira Ishikawa ◽  
Nobuo Ando

A cost estimate method is presented, which enables to compare inlet air cooling system for power enhancement of combustion turbine with other power generation system. A new energy conversion index is developed which arranges system design parameters in a dimensionless form and also exhibits running cost. It is suggested that the inlet air cooling system is equivalent to simple cycle or pumped storage in view of the dimensionless running cost. Next, a cost diagram relating capital cost to power generation cost is presented also in non-dimensional form, which could provide a measure to examine investment worth for a power producer. Moreover, cooling effectiveness as function of cooled inlet air temperature is investigated using specific thermal energy. It is revealed that cooling beyond dew point requires a larger thermal energy per electric energy produced and thus less economical unless the price of electricity depends on electricity demand.


Author(s):  
Francesco Ippolito ◽  
Mauro Venturini

This paper presents the development of a simulation tool for modeling the transient behavior of micro-CHP (combined heat and power) systems, equipped with both thermal and electric storage units and connected with both electric and district heating grid (DHG). The prime mover (PM) considered in this paper is an internal combustion reciprocating engine (ICE), which is currently the only well-established micro-CHP technology. Different users, characterized by different demands of electric and thermal energy, both in terms of absolute value and electric-to-thermal energy ratio, are analyzed in this paper. Both summer and winter hourly trends of electric and thermal energy demand are simulated by using literature data. The results present a comprehensive energy analysis of all scenarios on a daily basis, in terms of both user demand met and energy share among system components. The transient response of the PM and the thermal energy storage (TES) is also analyzed for the two scenarios with the lowest and highest daily energy demand, together with the trend over time of the state of charge of both thermal and electric energy storage (EES).


Author(s):  
B. K. Aliyarov ◽  
◽  
M. Zh. Zhurinov ◽  
◽  
◽  
...  

The article emphasizes the inevitability of the formation of CO2 in the production of thermal and electric energy with the combustion of fossil fuel and analyzes the sources of carbon dioxide generation at power facilities in Kazakhstan. Technologies for the production of electrical and thermal energy with reduced generation of carbon dioxide, which are being implemented in a short time, are discussed. A possible method for quantifying the level of CO2 emissions for the conditions of Kazakhstan is shown, through the use of the specific consumption of conventional (carbon) fuels for production as a unit of thermal energy and / or electricity. A number of available and relatively cheap technological solutions are presented, which, when implemented, can significantly reduce carbon dioxide emissions. It is noted that these technologies can be implemented administratively and economically, and the formulations of the required decisions of the Government are given. For each of the proposed technologies, an assessment of possible volumes of reduction of carbon dioxide emissions is given and difficulties that may be encountered during implementation are indicated. A scheme for determining the degree of participation of a particular country in global carbonation is considered and it is shown that, depending on the method of "spreading" the total volume of emissions of a particular country, one and the same country can be both among prosperous countries and among a number of countries to which it is necessary to apply strict "carbon" taxes. It is noted that the determination of the share of a particular country in the form of emissions per unit area of the country's territory seems to be more "fair" taking into account the global nature of pollution.


2020 ◽  
Vol 4 (4) ◽  
pp. 422-431
Author(s):  
Iqbal Fahri Tobing ◽  
Mustaqimah Mustaqimah ◽  
Raida Agustina

Abstrak. Pengering tipe Tray Dryer merupakan salah satu alat pengering rak atau pengering kabinet yang dapat digunakan untuk mengeringkan berbagai jenis bahan baku makanan. Alat pengering ini dirancang dengan tipe paralel flow tray dimana udara panas yang dihasilkan akan disirkulasikan sejajar dengan permukaan rak pengering dan bekerja menggunakan sumber energi listrik. Penelitian ini bertujuan untuk memodifikasi pengering tray dryer dengan penambahan insulator dan mengetahui konsumsi energi alat pengering tray dryer pada pengeringan kunyit. Parameter pengujian uji kinerja alat tanpa bahan meliputi distribusi suhu, kelembaban relatif dan kecepatan aliran udara dan untuk perhitungan konsumsi energi meliputi penggunaan energi listrik, perhitungan energi thermal, energi mengeringkan bahan, energi untuk menguapkan air bahan, efisiensi pengeringan, energi kipas dan kehilangan energi melalui cerobong. Pada pengujian pengering tray dryer suhu yang digunakan adalah 55°C. Hasil penelitian menunjukkan bahwa secara fungsional dan struktural alat pengering tray dryer setelah dimodifikasi dengan melapisi dinding luar ruang pengering dapat beroperasi dengan baik, proses pengeringan lebih cepat dan energi yang digunakan juga sedikit dibandingkan dengan sebelum dimodifikasi. Konsumsi energi listrik pada alat pengering tray dryer setelah dimodifikasi pada saat proses pengeringan dengan suhu 35oC selama 6,5 jam sebesar 35,33 kWh (127,2 MJ), pada suhu 45oC sebesar 24,26 kWh (88,06 MJ) dengan lamanya pengeringan selama 4,5 jam dan suhu 55oC sebesar 18,89 kWh (68,01 MJ) dengan lama pengeringan selama 3,5 jam, hal ii disebabkan lama pengeringan merupakan salah satu faktor yang menyebabkan besar kecilnya konsumsi energi listrik. Konsumsi energi thermal selama proses pengeringan dengan suhu 35°C adalah sebesar 17,53 MJ, suhu 45°C sebesar 19,54 MJ dan suhu 55°C sebesar 21,34 MJ. Berdasarkan hasil kalkulasi antara energi listrik dan energi thermal didapatkan efisiensi pengeringan pada suhu 35°C sebesar 27,80%, suhu 45°C sebesar 22,2% dan suhu 55°C sebesar 31,4%.Modification Of Tray Dryer With InsulatorAbstract. Tray Dryer is a type of dryer or cabinet dryer that can be used to dry various types of food raw materials. This dryer is designed with a parallel flow tray type where the hot air generated will be circulated parallel to the surface of the drying rack and work using an electric energy source. This study aims to modify the tray dryer with the addition of an insulator and determine the energy consumption of dryer dryers in turmeric drying. The test parameters of the performance test of equipment without material include temperature distribution, relative humidity and air flow velocity and for the calculation of energy consumption including the use of electrical energy, thermal energy calculation, energy drying material, energy to evaporate material water, drying efficiency, fan energy and energy loss through chimney. In testing the tray dryer dryer the temperature used is 55 ° C. The results showed that functionally and structurally the tray dryer after being modified by covering the outer walls of the drying chamber could operate well, the drying process was faster and the energy used was also less compared to before it was modified. Electric energy consumption in the tray dryer after being modified during the drying process with a temperature of 35oC for 6.5 hours amounted to 35.33 kWh (127.2 MJ), at a temperature of 45oC of 24.26 kWh (88.06 MJ) with a duration drying for 4.5 hours and a temperature of 55oC of 18.89 kWh (68.01 MJ) with a drying time of 3.5 hours, this is due to the length of drying is one of the factors causing the size of the electrical energy consumption. The consumption of thermal energy during the drying process with a temperature of 35 ° C is 17.53 MJ, a temperature of 45 ° C is 19.54 MJ and a temperature of 55 ° C is 21.34 MJ. Based on the results of calculations between electrical energy and thermal energy obtained drying efficiency at a temperature of 35 ° C at 27.80%, a temperature of 45 ° C at 22.2% and a temperature of 55 ° C at 31.4%


Joule ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Yan Zhang ◽  
Pham Thi Thuy Phuong ◽  
Eleanor Roake ◽  
Hamideh Khanbareh ◽  
Yaqiong Wang ◽  
...  

Author(s):  
Francesco Ippolito ◽  
Mauro Venturini

This paper presents the development of a simulation tool for modeling the transient behavior of micro-CHP systems, equipped with both thermal and electric storage units and connected with both electric and district heating grid. The prime mover considered in this paper is an internal combustion reciprocating engine, which is currently the only well-established micro-CHP technology. Different users, characterized by different demands of electric and thermal energy, both in terms of absolute value and electric-to-thermal energy ratio, are analyzed in this paper. Both summer and winter hourly trends of electric and thermal energy demand are simulated by using literature data. The results present a comprehensive energy analysis of all scenarios on a daily basis, in terms of both user demand met and energy share among system components. The transient response of the prime mover and the thermal energy storage is also analyzed for the two scenarios with the lowest and highest daily energy demand, together with the trend over time of the state of charge of both thermal and electric energy storage.


2020 ◽  
Vol 10 (21) ◽  
pp. 7600
Author(s):  
Oleg Marchenko ◽  
Sergei Solomin ◽  
Alexander Kozlov ◽  
Vitaly Shamanskiy ◽  
Igor Donskoy

The aim of this work is to assess the effectiveness of biomass gasification power plants in Russia (Irkutsk region) and compare them with other types of electricity and heat cogeneration systems. Biomass, which is waste from logging and wood processing, is considered as fuel for gasification plants. As a criterion, the cost of energy is used. Analytical relations are obtained for the cost of electric energy at a given cost of thermal energy and vice versa, thermal energy at a given cost of electric energy. These relationships are applied to assess the economic efficiency and compare small-power plants (up to 200–500 kW) such as mini-combined heat and power (CHP) on fuel chips and fuel pellets, coal-fired CHP and gas and liquid fuel power plants (gas-piston and diesel power plants). The latter are equipped with heat recovery boilers and supply consumers with heat and the electric power simultaneously. The calculation results show that the cost of electricity when using wood fuel is significantly less than the cost of electricity from a diesel power plant due to the use of cheaper fuel. In this regard, for autonomous energy systems of small power, especially near logging points, energy supply from biomass gasification power plants is a preferable solution than the use of diesel power plants. Wood fired energy cogeneration systems (mini-CHP) can also successfully compete with coal and gas power plants if they have cheap wood fuel at their location. With the introduction of carbon dioxide emissions charges, the use of not only wood chips, but also pellets becomes competitive in comparison with coal and gas.


Sign in / Sign up

Export Citation Format

Share Document