Studies on effect of concentration of polyethersulphone on hollow fibre membrane fabrication and its mechanical strength

2020 ◽  
pp. 1-11
Author(s):  
K. Selvam ◽  
B. Karunanithi
2019 ◽  
Vol 15 (4) ◽  
pp. 483-488
Author(s):  
Mohd Haiqal Abd Aziz ◽  
Mohd Hafiz Dzarfan Othman ◽  
Ahmad Fauzi Ismail ◽  
Mukhlis Abdul Rahman ◽  
Juhana Jaafar ◽  
...  

In this study, alumina-spinel composite hollow fibre membranes were fabricated from abundantly available aluminium dross waste, which can be commonly obtained from aluminium-producing factory. The hollow fibre membranes were successfully fabricated by using a combine phase inversion method and sintering technique. The effects of sintering temperatures on morphology, mechanical strength, and permeability of the hollow fibre membranes were systematically investigated. X-ray fluorescence (XRF) was used to analyze the composition of the aluminium dross waste, while x-ray diffraction analysis (XRD) were further studied to characterize the major crystalline phase of the sintered hollow fibre membranes. An increase in sintering temperatures resulted in densification of hollow fibre membrane, consequently induced the flux reduction. The presence of spinel in microstructural of hollow fibre assisted in decreasing the sintering temperature. As comparison to pure alumina membrane counterparts, this alternative ceramic hollow fibre membrane exhibited a comparable mechanical strength of 78.3-155.1 MPa with lower sintering temperatures ranging from 1350 ˚C to 1400 ˚C at ceramic loading of 40%.


2017 ◽  
Vol 29 (9) ◽  
pp. 1069-1082 ◽  
Author(s):  
Jingxuan Jia ◽  
Guodong Kang ◽  
Tong Zou ◽  
Meng Li ◽  
Meiqing Zhou ◽  
...  

In this study, the effect of sintering conditions including manner, temperature and duration on properties of polytetrafluoroethylene (PTFE) hollow fibre membrane fabricated by extrusion method was intensively investigated. Different from un-sintered and relaxed sintered, the fixed sintered PTFE hollow fibre membrane was observed to generate a uniform ‘fibril–node’ porous structure and a main crystal transformation to folded chain crystal with smaller size. Consequently, it was found that for fixed setting sintering, both temperature increase from 340°C to 400°C and duration prolongation obviously improved pore size, ethanol permeation performance and mechanical strength. Additionally, the test results revealed that the membrane sintered below virgin melting point (350°C) had a noticeable higher porosity but poorer ethanol permeation performance that could be primarily attributed to increased ratio of closed pore. The sintering condition exhibited evident influence on PTFE hollow fibre membrane thermal stability, though it showed no alteration to the thermal decomposition of PTFE. The obtained PTFE hollow fibre membrane was tested to evaluate their vacuum membrane distillation (VMD) performances. It was found that PTFE membrane from lower sintering temperature delivered a better salt rejection; on the other hand, the permeate flux was improved by increased vacuum pressure during VMD operation.


2016 ◽  
Vol 15 (2) ◽  
pp. 1
Author(s):  
Syafikah H Paiman ◽  
Mukhlis A A Rahman ◽  
Mohd Hafiz Dzarfan Othman ◽  
Siti Halimah Ahmad

Recently, ceramic membrane gradually acquired attention from researchers due to the advantages of ceramic’s behavior, which allows the ceramic to overcome the limitations of using polymeric membrane. This work focused on the fabrication of ceramic hollow fibre membrane from a ceramic suspension solution containing yttria-stabilized zirconia (YSZ), polyethersulfone (PESf), N-methylpyrrolidone (NMP) and dispersants using combined phase inversion sintering technique. In this study, ceramic hollow membrane precursors were sintered at different sintering temperature ranging between 1250°C and 1400°C. The influences of sintering temperature on the microstructure, porosity and pore size distribution, mechanical strength and pure water flux of ceramic hollow fibre membrane were investigated in detail. The results show an asymmetric structure of YSZ hollow fibre membrane containing finger-like structure and sponge-like structure. The sponge-like structure can serve as a separation layer, while finger-like-structure performs as a supported layer. It is observed that sintering process caused a significant densification of sponge-like structure (microstructure). Sintering at temperature 1400°C shows the formation of non- interconnected voids. Sintering at 1300°C is sufficient enough having a mechanical strength of 227.55MPa with an apparent porosity of 45.09% and PWF of 118.39L.m¯².hr¯¹.


2021 ◽  
Vol 1142 (1) ◽  
pp. 012011
Author(s):  
Suraya Najieha Kamarudin ◽  
Mohd Riduan Jamalludin ◽  
Siti Nor Suhaida Rasman ◽  
Siti Khadijah Hubadillah ◽  
Mohd Arif Budiman Pauzan ◽  
...  

1994 ◽  
Vol 17 (10) ◽  
pp. 543-548 ◽  
Author(s):  
Y.J. Gu ◽  
P.W. Boonstra ◽  
C. Akkerman ◽  
H. Mungroop ◽  
I. Tigchelaar ◽  
...  

The contact of blood with the artificial extracorporeal circuit causes a systemic inflammatory response due to blood activation. In this study, we compared two different paediatric membrane oxygenators used for extracorporeal circulation: a hollow fibre membrane oxygenator (Dideco Masterflo D-701, n=10), and a flat sheet silicone membrane oxygenator (Avecor Kolobow 800-2A, n=10). Blood compatibility was indicated by measuring complement activation as well as leukocyte and platelet activation. In patients perfused with a flat sheet membrane oxygenator, concentrations of complement split products C3a were significantly increased 30 minutes after the start of bypass (p<0.01), whereas only a mild increase of C3a was found in patients perfused with a hollow fibre membrane oxygenator. Leukocyte and platelet counts dropped uniformly in both groups after the start of bypass mainly due to hemodilution. Activation of leukocytes and platelets identified by both plasma β-glucuronidase and β-thromboglobulin was similar in both groups. Infants perfused with a flat sheet membrane oxygenator received significantly more donor blood than those perfused with a hollow fibre oxygenator (p<0.05). These results indicate that when used during paediatric cardiopulmonary bypass, a flat sheet membrane oxygenator has a higher complement activity than a hollow fibre membrane oxygenator, which is probably due to the relatively larger blood-surface contacting area of the oxygenator.


Author(s):  
Patricia Luis ◽  
Inmaculada Ortiz ◽  
Rubén Aldaco ◽  
Aurora Garea ◽  
Ángel Irabien

Removal of SO2 from gas emissions by selective absorption into a liquid is a common method to reduce air pollution and environmental risks. The absorption efficiency is determined by the interaction between the gases and the liquid. A great number of gas desulphurization methods have been developed where aqueous or organic solvents are used as sorbents.N,N-dimethylaniline (DMA) is an organic solvent used in the industry because its affinity with SO2. This absorption is neither too strong nor too weak, thus absorption and desorption can occur leading to a regenerative process where SO2 can be recovered. However, a direct contact between SO2 and DMA leads to several environmental problems caused by solvent evaporation and drops dragging into the gas stream.In order to increase the process efficiency and reduce environmental risks, a non-dispersive absorption process using hollow fibre membrane modules is developed in this work for a solvent zero emission process. The mass transfer into a fibre may be described by three main assumptions: gas-phase laminar flow, gas-phase plug-flow and gas-phase mixing. A numerical calculation was carried out to establish the performance of a hollow fibre membrane contactor for the removal of SO2 when water and N,N-dimethylaniline are used as sorbents in order to compare both, wetted and non-wetted operating modes.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar

Ceramic hollow fibre membrane (CHFM) demonstrated superior characteristics and performance in any separation application. The only problem associated with this kind of technology is the high cost. In order to effectively fabricate and produce low cost porous CHFM, a series of CHFMs made of kaolin were fabricated via combined phase inversion and sintering technique. The CHFMs from kaolin named as kaolin hollow fibre membranes (KHFMs) were studied at different kaolin contents of 35 wt.%, 37.5 wt.% and 40 wt.% sintered at 1200ºC. The result indicated that by varying kaolin contents, different morphologies were obtained due to changes in the viscosity of ceramic suspension containing kaolin. The optimum kaolin content for KHFM was identified. It was found that KHFM prepared at 37.5 wt% has a mechanical strength and pure water flux of A and B respectively.  


Sign in / Sign up

Export Citation Format

Share Document