High-grade calcareous metasediments from the Sawtooth Metamorphic Complex, Idaho, USA: evidence for passive margin strata and polymetamorphism within the Idaho batholith

2017 ◽  
Vol 59 (5-6) ◽  
pp. 753-778
Author(s):  
Isis Fukai ◽  
Barbara L. Dutrow
2020 ◽  
Vol 5 ◽  
pp. 19
Author(s):  
S. S. Baig ◽  
C. Xue ◽  
Masroor Alam ◽  
Naeem Ullah ◽  
M. Alam ◽  
...  

The Karakoram metamorphic Complex (KMC) in the southern Karakoram block is one of the best examples of Barrovian type metamorphism that comprises numerous exhumed metapelite units where a series of low to high grade (green schist to sillimanite facie) rocks are exposed. This sequence shows a complex polyphase history of metamorphism and deformation which offer deeper understanding of collision orogeny. Karakoram metamorphic Complex contains metapelites, meta-carbonates, meta-igneous and amphibolite layers, cross-cut by granite sheets in the northern part. This complex is bounded to the north by the Hunza plutonic unit which is the central portion of the massive east-west trending Karakoram axial batholith and to the southwest by the Main Karakoram thrust (MKT). In this contribution, we provide detail geological mapping, petrography, geochemistry and micro-analytical work using Electron Prob-micro analysis in the central Hunza Valley.


1974 ◽  
Vol 11 (2) ◽  
pp. 304-318 ◽  
Author(s):  
W. J. McMillan ◽  
J. M. Moore Jr.

Frenchman's Cap dome is one of a series of gneiss domes along the eastern border of the high-grade Shuswap metamorphic complex. The granitic gneisses which compose the core of the dome are enclosed in an envelope of metasedimentary rocks.Before Shuswap metamorphism and deformation, the rocks of the sedimentary envelope were intruded by concordant bodies of alkalic rocks and carbonatite. Other carbonatite bodies appear to have formed at or extruded onto the surface. It is not certain whether these are exhalative sedimentary deposits, lava flows, or pyroclastic deposits.Criteria which can be used to distinguish igneous alkalic rocks from those of metasomatic origin were almost entirely destroyed by regional metamorphism. A few relict igneous textures show that at least some of the alkalic gneisses are of igneous origin.


2007 ◽  
Vol 144 (5) ◽  
pp. 797-810 ◽  
Author(s):  
GAVIN HEUNG-NGAI CHAN ◽  
JOHN MALPAS ◽  
COSTAS XENOPHONTOS ◽  
CHING-HUA LO

The Troodos ophiolite in Cyprus and Baer–Bassit ophiolite in Syria together form part of the Tethyan ophiolite belt. They were generated in a supra-subduction zone setting in Late Cretaceous times. As with many of the ophiolite occurrences in this belt, the sequences are closely associated with tectonic ‘coloured mélange’ zones, which contain, among a variety of lithologies, metre- to kilometre-size blocks of metamorphic rocks. Precise 40Ar–39Ar laser step-heating experiments performed on four amphibolites from SW Cyprus and six from NW Syria, yield plateau ages ranging from 75.7±0.3 Ma to 88.9±0.8 Ma in Cyprus and 71.7±0.5 to 88.4±0.4 Ma in Syria. The older limits of these time spans are coeval with the age of the formation of the associated ophiolites. Unlike other metamorphic sole rocks which seem to form in relatively short time spans, these metamorphic rocks found in Cyprus and Syria are interpreted to have formed in Late Cretaceous times by accretion below the overriding Troodos and Baer–Bassit crust for a period of 15–18 Ma. The metamorphic complexes were exhumed by extension and crustal thinning associated with subduction roll-back and the rotation of the overriding plate until the cessation of subduction in Maastrichtian times. In Cyprus, the exhumed metamorphic complex was incorporated into an accretionary prism constructed primarily of the collapsed Mamonia passive margin sequence intercalated with rocks of the Troodos ophiolite during plate collision in the Maastrichtian. Concomitantly, in Syria, the Baer–Bassit ophiolite and subcreted metamorphic complex were emplaced onto the Arabian passive margin and fragmented into blocks and knockers, forming the Baer–Bassit mélange.


Author(s):  
Donald H. W. Hutton ◽  
Gary M. Ingram

The Great Tonalite Sill (GTS) of southeastern Alaska and British Columbia (Brew & Ford 1981; Himmelberg et al. 1991) is one of the most remarkable intrusive bodies in the world: it extends for more than 800 km along strike and yet is only some 25 km or less in width. It consists of a belt of broadly tonalitic sheet-like plutons striking NW–SE and dipping steeply NE, and has been dated between 55 Ma and 81 Ma (J. L. Wooden, written communication to D. A. Brew, April 1990) (late Cretaceous to early Tertiary). The sill (it is steeply inclined and rather more like a “dyke”) is emplaced along the extreme western margin of the Coast Plutonic and Metamorphic Complex (CPMC), the high grade core of the Western Cordillera. The CPMC forms the western part of a group of tectonostratigraphic terranes including Stikine and Cache Creek, collectively known as the Intermontane Superterrane (Rubin et al. 1990). To the W of the GTS, rocks of the Insular Superterrane, including the Alexander and Wrangellia terranes and the Gravina belt, form generally lower metamorphic grade assemblages. The boundary between these two superterranes is obscure but it may lie close to, or be coincident with, the trace of the GTS.


2013 ◽  
Author(s):  
Juliane Belém ◽  
Antônio Carlos Pedrosa-Soares ◽  
Carlos Maurício Noce ◽  
Luiz Carlos Da Silva ◽  
Richard Armstrong ◽  
...  

Resultados de datações U-Pb (LA-ICP-MS) sobre zircões e análises litoquímicas de amostras de paragnaisse e xisto do Grupo Andrelândia, coletadas desde sua área-tipo até a região de alto grau metamórfico do sistema orogênico Araçuaí-Ribeira, evidenciam que esta extensa unidade estratigráfica inclui representantes de bacia precursora de margem continental passiva, representada pelo Grupo Andrelândia Inferior (paragnaisse de Madre de Deus, Seqüência Carrancas), com idade máxima em ca. 950 Ma e fontes sedimentares diversificadas, datadas do Toniano ao Neoarqueano; e de bacias orogênicas, representadas pela Unidade Santo Antônio do Grupo Andrelândia Superior e paragnaisses de alto grau metamórfico da região de Ubá-Carangola, com idade máxima em torno de 640 Ma e extrema concentração de áreas-fontes neoproterozóicas. As análises litoquímicas apontam para larga predominância de fontes sedimentares situadas em arcos magmáticos, mas a amostra que melhor indica a bacia precursora (o paragnaisse de Madre de Deus, Seqüência Carrancas) tem assinatura similar a depósitos de margem continental passiva. Amostras de paragnaisse migmatítico revelam a idade de ca. 565 Ma para o clímax metamórfico-anatético na zona de fronteira Araçuaí-Ribeira. Destaca-se que o Grupo Andrelândia Superior, na forma como é representado em mapas atuais, incluiria pelo menos duas bacias orogênicas, i.e., uma, na Faixa Brasília e, outra, no sistema Araçuaí-Ribeira.Palavras-chave: geocronologia U-Pb, litoquímica, Grupo Andrelândia ABSTRACT: PRECURSOR BASIN VERSUS OROGENIC BASINS: EXAMPLES FROM THE ANDRELÂNDIA GROUP BASED ON ZIRCON U-Pb (LA-ICP-MS) AND LITHOCHEMICAL ANALYSIS. Results from zircon U-Pb (LA-ICP-MS) and lithochemical analysis on samples from the Andrelândia Group, collected from its type-area to the high grade core of the Araçuaí-Ribeira orogenic system, suggest that this extensive stratigraphic unit includes a precursor passive margin basin, represented by the Lower Andrelândia Group (Madre de Deus paragneiss, Carrancas sequence), with maximum depositional age around 950 Ma and diversified sediment sources dated from the Tonian to Neoarchean; and orogenic basin(s), represented by the Santo Antônio unit of the Upper Andrelândia Group and high grade paragneisses of the Ubá-Carangola region, with a maximum depositional age around 640 Ma and provenance extremely restricted to Neoproterozoic sources. Lithochemical analysis point to a large predominance of sediment sources located in magmatic arcs, but the sample representing the precursor basin shows signature similar to passive margin deposits. High grade paragneisses reveal the age of ca. 565 Ma to the metamorphic-anatectic climax in the Araçuaí-Ribeira boundary zone. It is important to notice that the Upper Andrelândia Group, as represented in current maps, includes at least two orogenic basins, i.e., the older, to the west, in the Brasília belt, and the younger, to the east, in the Araçuaí-Ribeira system.Keywords: U-Pb geochronology, lithochemistry, Andrelândia Group.


2021 ◽  
Author(s):  
Diego Rojo ◽  
Mauricio Calderón ◽  
Matias Ghiglione ◽  
Rodrigo Javier Suárez ◽  
Paulo Quezada ◽  
...  

<p>The Eastern Andean Metamorphic Complex (EAMC) in southwestern Patagonia (4°-52°S) is a 450 km long belt mainly composed by low-grade metasedimentary rocks of Upper Devonian-lower Carboniferous, and Permian-lower Triassic ages. Previous works have suggested a passive margin environment for the deposition of the protolith.  The EAMC comprise scarce interleaved tectonic slices of marbles, metabasites, and exceptional serpentinite bodies. At Lago O´Higgins-San Martin (48°30’S-49°00’S) the metasedimentary sucessions are tectonically juxtaposed with lenses of pillowed metabasalts and greenschists having OIB, N-MORB, BABB and IAT geochemical affinities. The Nd-isotopic composition of metabasalts is characterized by εNd<sub>(t=350 Ma)</sub> of +6 and +7. The metabasalts show no signal of crustal contamination, instead, the mantle source was probably modified by subduction components. New and already published provenance data based on mineralogy, geochemistry and zircon geochronology indicate that the quartz-rich protolith of metasandstones were deposited during late Devonian-early Carboniferous times (youngest single zircon ages around of latest Devonian-earliest Carboniferous times) sourced from igneous and/or sedimentary rocks located in the interior of Gondwana, as the Deseado Massif, for instance. Noticeable, the detrital age patterns of all samples reveal a prominent population of late Neoproterozoic zircons, probably directly derived from igneous and/or metaigneous rocks of the Brasiliano/Pan-African orogen or from reworked material from variably metamorphosed sedimentary units that crops out at the same latitudes in the extra-Andean region of Patagonia. We propose that the protolith of metabasites formed part of the upper part of an oceanic-like lithosphere generated in a marginal basin above a supra-subduction zone, where plume-related oceanic island volcanoes were generated. The closure of the marginal basin, probably in mid-Carboniferous times, or soon after. The oceanic lithosphere was likely underthrusted within an east-to-northeast-dipping subduction zone, where ophiolitic rocks and metasedimentary sequences were tectonically interleaved at the base of an accretionary wedge.</p>


2017 ◽  
Vol 188 (6) ◽  
pp. 36 ◽  
Author(s):  
Pierre Gautier ◽  
Valérie Bosse ◽  
Zlatka Cherneva ◽  
Amélie Didier ◽  
Ianko Gerdjikov ◽  
...  

The Rhodope Metamorphic Complex (RMC) is a high-grade crystalline massif located at the northern margin of the Aegean region. Numerous scenarios have been proposed for the evolution of the RMC during Alpine times. A debated issue is whether there has been a single protracted orogenic cycle since around the mid-Mesozoic or whether Alpine orogeny involved distinct episodes of subduction and crustal accretion. We describe a key outcrop located on the Nestos Shear Zone (NSZ), a major NNE-dipping top-to-SW shear zone characterized by an inverted metamorphic sequence. Structural and petrological data document the existence of two anatectic events. The first event, best preserved in decametric structural lenses, is pre-kinematic with respect to top-to-SW shearing and involved high-temperature “dry” melting. Zircon and monazite LA-ICPMS U-Th-Pb data indicate that this event occurred at ∼140 Ma. The second event is syn-kinematic with respect to top-to-SW shearing and involved lower-temperature water-assisted melting. Zircon and rutile LA-ICPMS U-Pb data indicate that this second event occurred at ∼40 Ma. During ongoing top-to-SW shearing and as late as ∼36 Ma, the rocks from the outcrop were at higher temperatures than the peak temperatures experienced by lower levels of the NSZ. This confirms the existence of the inverted metamorphic sequence and demonstrates that the NSZ was a major thrust at 36–40 Ma. The ∼100 Myr time laps between the two anatectic events encompasses the period from ∼115 to ∼70 Ma characterized by a gap in the geochronological record on the scale of the RMC (the Eastern Rhodope excluded). This ∼45 Myr gap likely reflects a period of tectonic quiescence between the mid-Mesozoic orogen and the Cenozoic one, attesting for polycyclic Alpine orogeny in the RMC. Unlike assumed in several geodynamic scenarios, the Alpine evolution of the RMC did not consist of a single orogenic cycle of Mesozoic age followed by Cenozoic crustal-scale extension triggered by mantle delamination. Polycyclic orogeny has resulted in a two-loop P-T-t path for the hangingwall unit of the NSZ. The Cenozoic P-T paths of this unit and the footwall unit merged while both units were being exhumed, a feature attributed to syn-thrusting extensional spreading of the main mass of the hangingwall unit above the NSZ.


2012 ◽  
Vol 60 ◽  
pp. 68-87 ◽  
Author(s):  
Prayath Nantasin ◽  
Christoph Hauzenberger ◽  
Xiaoming Liu ◽  
Kurt Krenn ◽  
Yunpeng Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document