High-speed electro-thermal modelling of a three-phase insulated gate bipolar transistor inverter power module

2010 ◽  
Vol 97 (2) ◽  
pp. 195-205 ◽  
Author(s):  
Zhongfu Zhou ◽  
Petar Igic
Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1203 ◽  
Author(s):  
Hao Li ◽  
Meng Zhao ◽  
Hao Yan ◽  
Xingwu Yang

An insulated gate bipolar transistor (IGBT) is one of the most reliable critical components in power electronics systems (PESs). The switching time during IGBT turn-on/off transitions is a good health status indicator for IGBT. However, online monitoring of IGBT switching time is still difficult in practice due to the requirement of extremely high sampling rate for nanoseconds time resolution. The compressed sensing (CS) method shows a potential to overcome the technical difficult by reducing the sampling rate. To further improve the efficiency and reduce the computational time for IGBT online condition monitoring (CM), an under-sampling reconstruction method of an IGBT high-speed switching signal is presented in this paper. First, the physical mechanism and signal characteristics of IGBT switching transitions are analyzed. Then, by utilizing the sparse characteristics of IGBT switching signal in the wavelet domain, the wavelet basis is used for sparse representation. The stagewise orthogonal matching pursuit (StOMP) algorithm is proposed to enhance the convergence speed for switching signal reconstruction. Experiments are performed on not only a double-pulse test rig but also a real Pulse-Width Modulation (PWM) converter. Results show that the IGBT high-speed switching transitions signal can be accurately recovered with a reduced sampling rate and the nanoseconds switching time change can be monitored for IGBT CM.


2006 ◽  
Vol 34 (3) ◽  
pp. 1021-1025 ◽  
Author(s):  
Fei Zhang ◽  
Lina Shi ◽  
Chengfang Li ◽  
Liang Zhang ◽  
Wei Wang ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2371
Author(s):  
Bo-Ying Liu ◽  
Gao-Sheng Wang ◽  
Ming-Lang Tseng ◽  
Kuo-Jui Wu ◽  
Zhi-Gang Li

In the exploration of new energy sources and the search for a path to sustainable development the reliable operation of wind turbines is of great importance to the stability of power systems. To ensure the stable and reliable operation of the Insulated Gate Bipolar Transistor (IGBT) power module, in this work the influence of changes with aging of different electro-thermal parameters on the junction temperature and the case temperature was studied. Firstly, power thermal cycling tests were performed on the IGBT power module, and the I-V characteristic curve, switching loss and transient thermal impedance are recorded every 1000 power cycles, and then the electrical parameters (saturation voltage drop and switching loss) and the thermal parameters (junction-to-case thermal resistance) of the IGBT are obtained under different aging states. The obtained electro-thermal parameters are substituted into the established electro-thermal coupling model to obtain the junction temperature and the case temperature under different aging states. The degrees of influence of these electro-thermal parameters on the junction temperature and case temperature under different aging states are analyzed by the single variable method. The results show that the changes of the electro-thermal parameters under different aging states affects the junction temperature and the case temperature as follows: (1) Compared with other parameters, the transient thermal impedance has the greatest influence on the junction temperature, which is 60.1%. (2) Compared with other parameters, the switching loss has the greatest influence on the case temperature, which is 79.8%. The result provides a novel method for the junction temperature calculation model and lays a foundation for evaluating the aging state by using the case temperature, which has important theoretical and practical significance for the stable operation of power electronic systems.


Sign in / Sign up

Export Citation Format

Share Document