Doxorubicin concentration in brain remains high for one day after triolein emulsion infusion induced BBB opening

2019 ◽  
Vol 130 (8) ◽  
pp. 770-776
Author(s):  
In Sook Lee ◽  
Hak Jin Kim ◽  
Seon Hee Choi ◽  
Yong-woo Kim ◽  
Ki Joo Choi
2021 ◽  
Author(s):  
Ying Meng ◽  
Christopher B Pople ◽  
Suganth Suppiah ◽  
Maheleth Llinas ◽  
Yuexi Huang ◽  
...  

Abstract Background Liquid biopsy is promising for early detection, monitoring of response and recurrence of cancer. The blood-brain barrier (BBB) limits the shedding of biomarker, such as cell-free DNA (cfDNA), into the blood, and their detection by conventional assays. Transcranial MR-guided focused ultrasound (MRgFUS) can safely and transiently open the BBB, providing an opportunity for less-invasive access to brain pathology. We hypothesized MRgFUS can enrich the signal of circulating brain-derived biomarkers to aid in liquid biopsy. Methods Nine patients were treated in a prospective single-arm, open-label trial to investigate serial MRgFUS and adjuvant temozolomide combination in patients with glioblastoma (NCT03616860). Blood samples were collected as an exploratory measure within the hours before and after sonication, with control samples from non-brain tumor patients undergoing BBB opening alone (NCT03739905). Results Brain regions averaging 7.8±6.0 cm 3 (range 0.8–23.1 cm 3) were successful treated within 111±39 minutes without any serious adverse events. We found MRgFUS acutely enhanced plasma cfDNA (2.6±1.2 fold, p<0.01, Wilcoxon signed-rank test), neuron-derived extracellular vesicles (3.2±1.9 fold, p<0.01), and brain specific protein S100b (1.4±0.2 fold, p<0.01). Further comparison of the cfDNA methylation profiles suggests a signature that is disease and post-BBB opening specific, in keeping with our hypothesis. We also found cfDNA mutant copies of isocitrate dehydrogenase 1 (IDH1) increased, although this was in only one patient known to harbour the tumor mutation. Conclusions This first-in-human proof-of concept study shows MRgFUS enriches the signal of circulating brain-derived biomarkers, demonstrating the potential of the technology to support liquid biopsy for the brain.


1982 ◽  
Vol 28 (1) ◽  
pp. 119-121 ◽  
Author(s):  
E Piall ◽  
G W Aherne ◽  
V Marks

Abstract We evaluated a commercially available (Diagnostic Biochemistry Inc.) doxorubicin 125I radioimmunoassay kit. This kit gave a high apparent doxorubicin concentration (greater than 12 micrograms/L), which was not linearly related to dilution, for two pools of normal human serum and plasma and also for samples collected from patients before they received the drug. In contrast, a doxorubicin 3H radioimmunoassay developed by us gave a low blank (2 micrograms/L), which was linearly related to dilution, for the same pools and patients' samples. Doxorubicin concentrations in the plasma of patients receiving the drug were compared by the two methods; the kit gave results five- to 10-fold those obtained with our assay. High nonspecific interference by serum and plasma as measured by the 125I radioimmunoassay must therefore be borne in mind by users of the kit, and we suggest that results should be corrected for these nonspecific effects.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carmen Gasca-Salas ◽  
Beatriz Fernández-Rodríguez ◽  
José A. Pineda-Pardo ◽  
Rafael Rodríguez-Rojas ◽  
Ignacio Obeso ◽  
...  

AbstractMR-guided focused ultrasound (MRgFUS), in combination with intravenous microbubble administration, has been applied for focal temporary BBB opening in patients with neurodegenerative disorders and brain tumors. MRgFUS could become a therapeutic tool for drug delivery of putative neurorestorative therapies. Treatment for Parkinson’s disease with dementia (PDD) is an important unmet need. We initiated a prospective, single-arm, non-randomized, proof-of-concept, safety and feasibility phase I clinical trial (NCT03608553), which is still in progress. The primary outcomes of the study were to demonstrate the safety, feasibility and reversibility of BBB disruption in PDD, targeting the right parieto-occipito-temporal cortex where cortical pathology is foremost in this clinical state. Changes in β-amyloid burden, brain metabolism after treatments and neuropsychological assessments, were analyzed as exploratory measurements. Five patients were recruited from October 2018 until May 2019, and received two treatment sessions separated by 2–3 weeks. The results are set out in a descriptive manner. Overall, this procedure was feasible and reversible with no serious clinical or radiological side effects. We report BBB opening in the parieto-occipito-temporal junction in 8/10 treatments in 5 patients as demonstrated by gadolinium enhancement. In all cases the procedures were uneventful and no side effects were encountered associated with BBB opening. From pre- to post-treatment, mild cognitive improvement was observed, and no major changes were detected in amyloid or fluorodeoxyglucose PET. MRgFUS-BBB opening in PDD is thus safe, reversible, and can be performed repeatedly. This study provides encouragement for the concept of BBB opening for drug delivery to treat dementia in PD and other neurodegenerative disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonios N. Pouliopoulos ◽  
Nancy Kwon ◽  
Greg Jensen ◽  
Anna Meaney ◽  
Yusuke Niimi ◽  
...  

AbstractAn emerging approach with potential in improving the treatment of neurodegenerative diseases and brain tumors is the use of focused ultrasound (FUS) to bypass the blood–brain barrier (BBB) in a non-invasive and localized manner. A large body of pre-clinical work has paved the way for the gradual clinical implementation of FUS-induced BBB opening. Even though the safety profile of FUS treatments in rodents has been extensively studied, the histological and behavioral effects of clinically relevant BBB opening in large animals are relatively understudied. Here, we examine the histological and behavioral safety profile following localized BBB opening in non-human primates (NHPs), using a neuronavigation-guided clinical system prototype. We show that FUS treatment triggers a short-lived immune response within the targeted region without exacerbating the touch accuracy or reaction time in visual-motor cognitive tasks. Our experiments were designed using a multiple-case-study approach, in order to maximize the acquired data and support translation of the FUS system into human studies. Four NHPs underwent a single session of FUS-mediated BBB opening in the prefrontal cortex. Two NHPs were treated bilaterally at different pressures, sacrificed on day 2 and 18 post-FUS, respectively, and their brains were histologically processed. In separate experiments, two NHPs that were earlier trained in a behavioral task were exposed to FUS unilaterally, and their performance was tracked for at least 3 weeks after BBB opening. An increased microglia density around blood vessels was detected on day 2, but was resolved by day 18. We also detected signs of enhanced immature neuron presence within areas that underwent BBB opening, compared to regions with an intact BBB, confirming previous rodent studies. Logistic regression analysis showed that the NHP cognitive performance did not deteriorate following BBB opening. These preliminary results demonstrate that neuronavigation-guided FUS with a single-element transducer is a non-invasive method capable of reversibly opening the BBB, without substantial histological or behavioral impact in an animal model closely resembling humans. Future work should confirm the observations of this multiple-case-study work across animals, species and tasks.


1989 ◽  
Vol 70 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Toshihiko Kuroiwa ◽  
Makoto Shibutani ◽  
Riki Okeda

✓ The effect of suppression of postischemic reactive hyperemia on the blood-brain barrier (BBB) and ischemic brain edema after temporary focal cerebral ischemia was studied in cats under ketamine and alpha-chloralose anesthesia. Regional cerebral blood flow (rCBF) was measured by a thermal diffusion method and a hydrogen clearance method. The animals were separated into three groups. In Group A, the left middle cerebral artery (MCA) was occluded for 6 hours. In Group B, the MCA was occluded for 3 hours and then reperfused for 3 hours; postischemic hyperemia was suppressed to the preischemic level by regulating the degree of MCA constriction. In Group C, the MCA was occluded for 3 hours and reperfused for 3 hours without suppressing the postischemic reactive hyperemia. The brain was removed and cut coronally at the site of rCBF measurement. The degree of ischemic edema was assessed by gravimetry in samples taken from the coronal section and correlated with the degree of BBB disruption at the corresponding sites, evaluated by densitometric determination of Evans blue discoloration. The findings showed that 1) ischemic edema was significantly exacerbated by postischemic hyperemia during reperfusion in parallel with the degree of BBB opening to serum proteins, and 2) suppression of postischemic hyperemia significantly reduced the exacerbation of ischemic edema and BBB opening. These findings indicate that blood flow may be restored without significant exacerbation of postischemic edema by the suppression of postischemic hyperemia in focal cerebral ischemia.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Po-Chun Chu ◽  
Wen-Yen Chai ◽  
Han-Yi Hsieh ◽  
Jiun-Jie Wang ◽  
Shiaw-Pyng Wey ◽  
...  

Microbubble-enhanced focused ultrasound (FUS) can enhance the delivery of therapeutic agents into the brain for brain tumor treatment. The purpose of this study was to investigate the influence of brain tumor conditions on the distribution and dynamics of small molecule leakage into targeted regions of the brain after FUS-BBB opening. A total of 34 animals were used, and the process was monitored by 7T-MRI. Evans blue (EB) dye as well as Gd-DTPA served as small molecule substitutes for evaluation of drug behavior. EB was quantified spectrophotometrically. Spin-spin (R1) relaxometry and area under curve (AUC) were measured by MRI to quantify Gd-DTPA. We found that FUS-BBB opening provided a more significant increase in permeability with small tumors. In contrast, accumulation was much higher in large tumors, independent of FUS. The AUC values of Gd-DTPA were well correlated with EB delivery, suggesting that Gd-DTPA was a good indicator of total small-molecule accumulation in the target region. The peripheral regions of large tumors exhibited similar dynamics of small-molecule leakage after FUS-BBB opening as small tumors, suggesting that FUS-BBB opening may have the most significant permeability-enhancing effect on tumor peripheral. This study provides useful information toward designing an optimized FUS-BBB opening strategy to deliver small-molecule therapeutic agents into brain tumors.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
So Hee Park ◽  
Kyoungwon Baik ◽  
Seun Jeon ◽  
Won Seok Chang ◽  
Byoung Seok Ye ◽  
...  

Abstract Background Focused ultrasound (FUS)-mediated blood–brain barrier (BBB) opening has shown efficacy in removal of amyloid plaque and improvement of cognitive functions in preclinical studies, but this is rarely reported in clinical studies. This study was conducted to evaluate the safety, feasibility and potential benefits of repeated extensive BBB opening. Methods In this open-label, prospective study, six patients with Alzheimer’s disease (AD) were enrolled at Severance Hospital in Korea between August 2020 and September 2020. Five of them completed the study. FUS-mediated BBB opening, targeting the bilateral frontal lobe regions over 20 cm3, was performed twice at three-month intervals. Magnetic resonance imaging, 18F-Florbetaben (FBB) positron emission tomography, Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI) and comprehensive neuropsychological tests were performed before and after the procedures. Results FUS targeted a mean volume of 21.1 ± 2.7 cm3 and BBB opening was confirmed at 95.7% ± 9.4% of the targeted volume. The frontal-to-other cortical region FBB standardized uptake value ratio at 3 months after the procedure showed a slight decrease, which was statistically significant, compared to the pre-procedure value (− 1.6%, 0.986 vs1.002, P = 0.043). The CGA-NPI score at 2 weeks after the second procedure significantly decreased compared to baseline (2.2 ± 3.0 vs 8.6 ± 6.0, P = 0.042), but recovered after 3 months (5.2 ± 5.8 vs 8.6 ± 6.0, P = 0.89). No adverse effects were observed. Conclusions The repeated and extensive BBB opening in the frontal lobe is safe and feasible for patients with AD. In addition, the BBB opening is potentially beneficial for amyloid removal in AD patients.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi164-vi164
Author(s):  
Tavarekere Nagaraja ◽  
Seamus Bartlett ◽  
Glauber Cabral ◽  
Katelynn Farmer ◽  
Robert Knight ◽  
...  

Abstract Laser interstitial thermal therapy (LITT) is a minimally invasive tumor cytoreductive treatment for recurrent gliomas, brain tumors in eloquent regions and/or otherwise inaccessible. Following reports of persistent peri-ablation blood-brain barrier (BBB) opening in humans, we examined this phenomenon using a rat glioblastoma model. Athymic female rats were implanted with U251 tumor cells in one brain hemisphere. Tumor growth was monitored using magnetic resonance imaging (MRI) and dynamic contrast enhanced (DCE)-MRI. When tumors reached about 4 mm in diameter, they were ablated under supervision of diffusion-weighted MRI using Visualase®, a clinical LITT system. Four rats were used as controls. Longitudinal MRI data were obtained before LITT, and at post-LITT 2 (n=9), 3 (n=3) and 4 (n=9) weeks. After the terminal MRI at each time point, rats were injected intravenously with fluorescent isothiocyanate dextran (FITC-dextran; 2000 kDa) and Evans Blue (68 kDa after binding to plasma albumin) and the brains immersion fixed in 10% paraformaldehyde. The brains were cut into 100 μM thick slices in a vibratome and examined for the distribution of the two fluorophores. All rats survived the LITT procedure. The sham controls showed increased tumor burden by 2 weeks and were sacrificed. DCE-MRI data and fluorescent data showed elevated BBB permeability in peri-ablation regions, with leakage of a gadolinium contrast on DCE-MRI and of Evans Blue, but not of FITC-dextran. Histology showed little tumor tissue at 2 weeks, but evidence of recurrence at ablation margins at later times. These data demonstrate that LITT is adaptable to rat glioma models and can be performed under MRI monitoring. Peri-ablation regions showed selective increase in BBB permeability acutely due to sublethal heating, but later increases in permeability may be due to tumor recurrence. We suggest this model is useful for examining the temporal and spatial development of peri-ablation BBB opening following LITT.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii12-ii12
Author(s):  
Michiharu Yoshida ◽  
Kazuo Maruyama ◽  
Yasutaka Kato ◽  
Rachmilevitch Itay ◽  
Syuji Suzuki ◽  
...  

Abstract OBJECTIVE In neuro-oncology, it is believed that one major obstacle to effective chemotherapy is the high vascularity and heterogenous permeability of brain tumors. Focused ultrasound (FUS) exposure with the microbubbles has been shown to transiently open the blood-brain barrier (BBB) without depositing thermal energy, and thus may enhance the delivery of various therapeutic drugs into brain tumors. The aim of this study was to evaluate the BBB opening using 220-kHz transcranial MRI-guided FUS (TcMRgFUS) device and microbubbles in mouse and rat. METHODS The experiments were performed with the 220-kHz ExAblate Neuro TcMRgFUS system (InSightec) and novel lipid bubbles (LB, Teikyo Univ.). Normal mouse and rat brains were irradiated with TcMRgFUS (output power, 5W; duration of irradiation, 30 s; duty cycle 100%) following intravenous injection of 6x107 LB per mouse and rat, respectively. On irradiation, target temperature rise & cavitation signal were monitored by MR thermometry and cavitation receiver, respectively. Immediately after irradiation, BBB opening and complications were detected based on T1, T2, T2*, and Gadolinium (Gd) enhanced T1-weighted images. RESULTS The maximum temperature of brain tissue was under 42 C. There were no risky-cavitation signals causing hemorrhage. The FUS-LB exposure induced successful BBB opening effect in both mouse and rat, confirmed by Gd enhancement in the target region, lateral ventricles, and sulcus. In addition, there were no complications such as edema, coagulation, and hemorrhage. CONCLUSIONS Although there remain many conditions to be optimized, BBB opening using a 220-kHz TcMRgFUS device and LB can offer a non-invasive and feasible drug delivery for brain malignancies.


Sign in / Sign up

Export Citation Format

Share Document