A probabilistic projection of the transient flow equations with random system parameters and internal boundary conditions

2016 ◽  
Vol 54 (3) ◽  
pp. 342-359 ◽  
Author(s):  
Ahmed M. A. Sattar
1996 ◽  
Vol 33 (9) ◽  
pp. 9-16 ◽  
Author(s):  
John A. Swaffield ◽  
John A. McDougall

The transient flow conditions within a building drainage system may be simulated by the numerical solution of the defining equations of momentum and continuity, coupled to a knowledge of the boundary conditions representing either appliances discharging to the network or particular network terminations. While the fundamental mathematics has long been available, it is the availability of fast, affordable and accessible computing that has allowed the development of the simulations presented in this paper. A drainage system model for unsteady partially filled pipeflow will be presented in this paper. The model is capable of predicting flow depth and rate, and solid velocity, throughout a complex network. The ability of such models to assist in the decision making and design processes will be shown, particularly in such areas as appliance design and water conservation.


2016 ◽  
Vol 25 (04) ◽  
pp. 1630011 ◽  
Author(s):  
Alejandro Corichi ◽  
Irais Rubalcava-García ◽  
Tatjana Vukašinac

In this review, we consider first-order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad [Formula: see text] and a [Formula: see text] connection [Formula: see text]. We study the most general action principle compatible with diffeomorphism invariance. This implies, in particular, considering besides the standard Einstein–Hilbert–Palatini term, other terms that either do not change the equations of motion, or are topological in nature. Having a well defined action principle sometimes involves the need for additional boundary terms, whose detailed form may depend on the particular boundary conditions at hand. In this work, we consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. We focus on the covariant Hamiltonian formalism where the phase space [Formula: see text] is given by solutions to the equations of motion. For each of the possible terms contributing to the action, we consider the well-posedness of the action, its finiteness, the contribution to the symplectic structure, and the Hamiltonian and Noether charges. For the chosen boundary conditions, standard boundary terms warrant a well posed theory. Furthermore, the boundary and topological terms do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether conserved charges, on the other hand, do depend on such additional terms. The aim of this manuscript is to present a comprehensive and self-contained treatment of the subject, so the style is somewhat pedagogical. Furthermore, along the way, we point out and clarify some issues that have not been clearly understood in the literature.


1982 ◽  
Vol 104 (2) ◽  
pp. 227-233
Author(s):  
Patrick Bourgin ◽  
Bernard Gay

The bidimensional flow equations of a Stokesian fluid are solved for the case of steady, incompressible, and laminar flow between two arbitrary moving surfaces separated by a small gap. The stress T22 and the shearing stress at one of the walls are coupled through nonlinear integro-differential equations, depending on the viscous function only. The form of this differential system is specified for the equations derived from the theory of phenomenological macrorheology, as developed by Reiner and Rivlin. The solution is proved to be unique under certain conditions and for adequate boundary conditions. An example is worked out in the particular case of one single non-Newtonian parameter. The problem is solved in two different ways, using an approximate analytic method and a numerical method. The conception of the latter allows to generalize it by introducing only slight modifications into the program.


Author(s):  
Alireza Riasi ◽  
Ahmad Nourbakhsh

Unsteady flow analysis in water power stations is one of the most important issues in order to predict undesirable pressure variations in waterways and also probable changes in rotor speed for the power plants safe operation. Installation of surge tank and relief valve is the two main methods for controlling of hydraulic transient. The relief valve is used in several medium and small hydropower stations instead of the surge tank and mounted on the penstock near the powerhouse. The recent generation of relief valves are reliable and beneficial and consist of fully control system that directly conducted by governor. This paper presents a numerical method for transient flow in hydropower stations using surge tank and relief valve. For this purpose the governing equations of transient flow in closed conduit are solved using the method of characteristics (MOC) using unsteady friction. Hydraulic turbine, surge tank and relief valve are considered as internal boundary conditions. The influence of surge tank and also relief valve on the maximum pressure in spiral case and turbine over speed has been studied for a real case. The results show that the transient condition is considerably improved by using a relief valve and this device can be mounted in lieu of an expensive surge tank.


Author(s):  
Ali Pourfard ◽  
Esmaeel Khanmirza ◽  
Reza Madoliat

Simulation of a natural gas network operation is a prerequisite for optimization and control tasks. Treating gas in a transient manner is necessary for accurate simulation of gas networks. However, solving the governing nonlinear partial differential equations of pipe flows is a challenging task. In this paper, a novel approach is proposed based on using an intelligent algorithm called teaching–learning-based optimization. This approach simplifies transient simulation of gas networks with a specified type of boundary conditions. Teaching–learning-based optimization estimates different values for network inlet flow rates. Then by knowing the inlet boundary conditions of the network, the discretized flow equations become linear and the flow equations of each pipe can be solved independently. Thus, the network outlet flow variables can be easily obtained. The differences of obtained and actual network outlet flow rates are considered as a cost function or error. Finally, this intelligent algorithm determines the optimum inlet flow rates at each time level, which minimize the error. The proposed approach is implemented on the in-service gas network. To validate the simulation results, a conventional gradient-based method called trust region dogleg is also used for simulation of the gas network. The comparison of numerical results confirms the accuracy and efficiency of this approach, while it is more computationally efficient. Moreover, the substitution of teaching–learning-based optimization with another powerful intelligent optimization algorithm would not improve the performance of the proposed approach.


Author(s):  
Ahmed H. Dweib

Energy-based finite element model is utilized for the evaluation of the Statistical Energy Analysis (SEA) coupling factor and the dependence of the coupling factor on the different system parameters is studied. Previous research has shown that the coupling factor is largely dependent on the modal densities of the fluid and pipe subsystems, which depend on the pipe dimensional parameters. The coupling factor depends also on the spectrum of the acoustic power generated, which in turn depends on the mass flow rate, the pressure reduction ratio and the characteristics of the pressure-reducing device. This study is concerned with the piping system parameters, downstream of the pressure-reducing valve. The system parameters selected for consideration are the pipe diameter to thickness ratio D/T and the pipe length to diameter ratio L/D. The study presents the effect of the variation in these two dimensionless parameters on the coupling factor. The results of the analysis can be used directly in the formulation of SEA power flow equations for large piping systems with multiple sources of acoustic energy as part of the fatigue life evaluation in critical services.


2009 ◽  
Vol 77 (2) ◽  
Author(s):  
Sverker Edvardsson ◽  
Tetsu Uesaka

In the present work we propose a particle approach, which is designed to treat complex mechanics and dynamics of the open-draw sections that are still present in many of today’s paper machines. First, known steady-state continuous solutions are successfully reproduced. However, it is shown that since the boundary conditions depend on the solution itself, the solutions for web strain and web path in the open-draw section are generally time-dependent. With a certain set of system parameters, the nonsteady solutions are common. A temporal fluctuation of Young’s modulus, for example, destabilizes the system irreversibly, resulting in the continuous growth of web strain, i.e., break. Finally we exemplify with some strategic draw countermeasures how to prevent a dangerous evolution in the web strain.


McElroy M and Keshmiri A, Impact of using conventional inlet/outlet boundary conditions on haemodynamic metrics in a subject-specific rabbit aorta, Proc IMechE, Part H: Journal of Engineering in Medicine, first published on March 25, 2017, DOI: 10.1177/0954411917699237 Following OnlineFirst publication of the article, the authors informed SAGE of an error in the transient velocity inlet profile which had been defined inaccurately due to a human error in the interpretation of clinical data in the literature. As a result of this error in boundary conditions, some of the results of transient flow computations were incorrect. A watermarked version of the first publication of the article (as first published on March 25, 2017) is attached for reference in the PDF version of this corrigendum. The authors have revised and corrected their article. The revised version of the article has been accepted following peer review and replaces the article first published on March 25, 2017. Date received: 8 August 2017; accepted: 30 November 2017 (Revised version) Date received: 29 March 2016; accepted: 21 February 2017 (Original version) The correct and citable version of the article is accessible at the following DOI: 10.1177/0954411917699237


Sign in / Sign up

Export Citation Format

Share Document