scholarly journals Differences in CO2and N2O emission rates following crop residue incorporation with or without field burning: A case study of adzuki bean residue and wheat straw

2015 ◽  
Vol 62 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Nobuhisa Koga ◽  
Kentaro Hayashi ◽  
Seiji Shimoda
2017 ◽  
Vol 8 (4) ◽  
pp. 223-228
Author(s):  
Duc Minh Ngo ◽  
Van Trinh Mai ◽  
Dang Hoa Tran ◽  
Trong Nghia Hoang ◽  
Manh Khai Nguyen ◽  
...  

Nitrous oxide (N2O) emisison from paddy soil via the soil nitrification and denitrification processes makes an important contribution to atmospheric greenhouse gas concentrations. The soil N2O emission processes are controlled not only by biological, physical and chemical factors but also by farming practices. In recent years, modeling approach has become popular to predict and estimate greenhouse gas fluxes from field studies. In this study, the DeNitrification–DeComposition (DNDC) model were calibrated and tested by incorporating experimental data with the local climate, soil properties and farming management, for its simulation applicability for the irrigated rice system in Duy Xuyen district, a delta lowland area of Vu Gia-Thu Bon River Basin regions. The revised DNDC was then used to quantitatively estimate N2O emissions from rice fields under a range of three management farming practices (water management, crop residue incorporation and nitrogen fertilizer application rate). Results from the simulations indicated that (1) N2O emissions were significantly affected by water management practices; (2) increases in temperature, total fertilizer N input substantially increased N2O emissions. Finally, five 50-year scenarios were simulated with DNDC to predict their long-term impacts on crop yield and N2O emissions. The modelled results suggested that implementation of manure amendment or crop residue incorporation instead of increased nitrogen fertilizer application rates would more efficiently mitigate N2O emissions from the tested rice-based system. Phát thải nitơ ôxít (N2O) từ canh tác lúa nước (thông qua quá trình nitrat hóa và phản nitrat hóa) đóng góp đáng kể vào tổng lượng khí nhà kính có nguồn gốc từ sản xuất nông nghiệp. Quá trình phát thải N2O là không chỉ phụ thuộc vào các yếu tố sinh-lý-hóa học mà còn phụ thuộc các phương pháp canh tác. Trong những năm gần đây, việc ứng dụng mô hình hóa nhằm tính toán và ước lượng sự phát thải khí nhà kính ngày càng trở lên phổ biến. Trong nghiên cứu này, số liệu quan trắc từ thí nghiệm đồng ruộng và dữ liệu về đất đai, khí hậu, biện pháp canh tác được sử dụng để kiểm nghiệm và phân tích độ nhạy của mô hình DNDC (mô hình sinh địa hóa). Sau đó, mô hình được sử dụng để tính toán lượng N2O phát thải trong canh tác lúa nước dưới các phương thức canh tác khác nhau (về chế độ tưới, mức độ vùi phụ phẩm, bón phân hữu cơ, phân đạm) tại huyện Duy Xuyên, thuộc vùng đồng bằng thấp của lưu vực sông Vu Gia-Thu Bồn. Kết quả kiểm định chỉ ra rằng (1) sự phát thải N2O bị ảnh hưởng đáng kể do sự thay đổi chế độ tưới; (2) nhiệt độ tăng và lượng phân bón N tăng sẽ làm tăng phát thải N2O. Kết quả mô phỏng về tác động lâu dài (trong 50 năm) của các yếu tố đến năng suất cây trồng và phát thải N2O cho thấy: Việc sử dụng phân hữu cơ và phụ phẩm nông nghiệp thay thế cho việc bón phân đạm sẽ giúp giảm phát thải N2O đáng kể.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Wei HU ◽  
Ning SUI ◽  
Chaoran YU ◽  
Changqin YANG ◽  
Ruixian LIU ◽  
...  

Abstract Background Crop residue incorporation into the soil is an effective method to augment soil potassium (K) content, and effects of crop residue and K fertilizer on soil K balance have been compared. However, their influences on other soil characteristics such as carbon (C) and nitrogen (N) characteristics and microbial activities have not been quantified. To address this, field experiments were conducted in 2011 at Dafeng (sandy loam) and Nanjing (clay loam) in China with treatments including blank control without crop residue incorporation and K fertilizer application, 0.9 t·ha− 1 wheat straw incorporation (W1C0), 0.7 t·ha− 1 cotton residue incorporation (W0C1), 0.9 t·ha− 1 wheat straw + 0.7 t·ha− 1 cotton residue incorporation (W1C1) and two K fertilizer rates (150 and 300 kg·ha− 1(K2O)) during the cotton season. Results Compared with control, K fertilizer treatments did not alter soil water-soluble organic carbon/soil organic carbon (WSOC/SOC) ratio, microbial biomass carbon (MBC)/SOC ratio, MBC/microbial biomass nitrogen (MBN) ratio, water inorganic nitrogen/total nitrogen ratio (WIN/TN), the number of cellulose-decomposing bacteria, or related enzymes activities, however, W0C1, W1C0 and W1C1 treatments significantly increased WSOC/SOC ratio, MBC/SOC ratio and MBC/ MBN ratio, and decreased WIN/TN ratio at both sites. W0C1, W1C0 and W1C1 treatments also increased the number of soil cellulose-decomposing bacteria and activities of cellulase, β-glucosidase and arylamidase. Regarding different crop residue treatments, W1C0 and W1C1 treatments had more significant influences on above mentioned parameters than W0C1 treatment. Moreover, MBC/MBN ratio was the most important factor to result in the differences in the number of cellulose-decomposing bacteria and soil enzymes activities among different treatments. Conclusions Short-term K fertilizer application doesn’t affect soil C and N availability and microbial activities. However, crop residue incorporation alters soil C and N characteristics and microbial activities, and the influence of wheat straw is much stronger than that of cotton straw.


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 723 ◽  
Author(s):  
Ning Sui ◽  
Chaoran Yu ◽  
Guanglei Song ◽  
Fan Zhang ◽  
Ruixian Liu ◽  
...  

The objective of this study was to evaluate the effects of consecutive crop residue incorporation and potassium (K) fertilisation on plant–soil K balance, K forms, K release and K fixation capacity under wheat–cotton rotation at Nanjing and Dafeng in China. Six treatments were evaluated: control (without K input), wheat straw at 0.9tha–1, cotton residue at 0.7tha–1, wheat straw and cotton residue at the aforementioned rates, and 150 and 300kg ha–1 fertiliser K. Treatments in each rotation year had an identical rate of nitrogen and phosphate fertiliser application. The initial soil K content was higher in Dafeng than Nanjing. In the low K content soil of Nanjing, crop K uptake with double crop straw was significantly higher than that under single crop straw return or inorganic fertiliser, and K uptake increased with increasing K inputs. Only double crop straw or 300kg ha–1 fertiliser K treatments reached apparent K balance in Nanjing, but not in Dafeng. The high negative K balance resulted from the elevated K removal by crops in Dafeng. Incorporation of double crop residues favoured accumulation of different forms of K. Application of K fertiliser tended to increase soil water-soluble K, and crop residue incorporation greatly improved non-exchangeable K at a depth of 0–20cm. Similar to K fertiliser, crop residue incorporation significantly increased soil K release and decreased K fixation at both sites. In summary, in a 3-year field experiment, crop residue incorporation and inorganic K fertilisation had similar effects on soil K pools and balance depending on initial soil K level and actual K input.


Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1 ◽  
Author(s):  
Christopher Poeplau ◽  
Lisa Reiter ◽  
Antonio Berti ◽  
Thomas Kätterer

Crop residue incorporation (RI) is recommended to increase soil organic carbon (SOC) stocks. However, the positive effect on SOC is often reported to be relatively low and alternative use of crop residues, e.g. as a bioenergy source, may be more climate smart. In this context, it is important to understand: (i) the response of SOC stocks to long-term crop residue incorporation; and (ii) the qualitative SOC change, in order to judge the sustainability of this measure. We investigated the effect of 40 years of RI combined with five different nitrogen (N) fertilisation levels on SOC stocks and five SOC fractions differing in turnover times on a clay loam soil in Padua, Italy. The average increase in SOC stock in the 0–30cm soil layer was 3.1Mgha–1 or 6.8%, with no difference between N fertilisation rates. Retention coefficients of residues did not exceed 4% and decreased significantly with increasing N rate (R2=0.49). The effect of RI was higher after 20 years (4.6Mgha–1) than after 40 years, indicating that a new equilibrium has been reached and no further gains in SOC can be expected. Most (92%) of the total SOC was stored in the silt and clay fraction and 93% of the accumulated carbon was also found in this fraction, showing the importance of fine mineral particles for SOC storage, stabilisation and sequestration in arable soils. No change was detected in more labile fractions, indicating complete turnover of the annual residue-derived C in these fractions under a warm humid climate and in a highly base-saturated soil. The applied fractionation was thus useful to elucidate drivers and mechanisms of SOC formation and stabilisation. We conclude that residue incorporation is not a significant management practice affecting soil C storage in warm temperate climatic regions.


Sign in / Sign up

Export Citation Format

Share Document