Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method

Author(s):  
Fatih Ciftci ◽  
Nilüfer Duygulu ◽  
Yasemin Yilmazer ◽  
Oguzhan Gündüz ◽  
Cem Bülent Ustündag
Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
YY Kamrani ◽  
M Amanlou ◽  
A Yazdanyar ◽  
A AdliMoghaddam ◽  
SN Ebrahimi

2003 ◽  
Vol 773 ◽  
Author(s):  
James D. Kubicek ◽  
Stephanie Brelsford ◽  
Philip R. LeDuc

AbstractMechanical stimulation of single cells has been shown to affect cellular behavior from the molecular scale to ultimate cell fate including apoptosis and proliferation. In this, the ability to control the spatiotemporal application of force on cells through their extracellular matrix connections is critical to understand the cellular response of mechanotransduction. Here, we develop and utilize a novel pressure-driven equibiaxial cell stretching device (PECS) combined with an elastomeric material to control specifically the mechanical stimulation on single cells. Cells were cultured on silicone membranes coated with molecular matrices and then a uniform pressure was introduced to the opposite surface of the membrane to stretch single cells equibiaxially. This allowed us to apply mechanical deformation to investigate the complex nature of cell shape and structure. These results will enhance our knowledge of cellular and molecular function as well as provide insights into fields including biomechanics, tissue engineering, and drug discovery.


2018 ◽  
Author(s):  
Roshna Vakkeel ◽  
Aleeza Farrukh ◽  
Aranzazu del Campo

In order to study how dynamic changes of α5β1 integrin engagement affect cellular behaviour, photoactivatable derivatives of α5β1 specific ligands are presented in this article. The presence of the photoremovable protecting group (PRPG) introduced at a relevant position for integrin recognition, temporally inhibits ligand bioactivity. Light exposure at cell-compatible dose efficiently cleaves the PRPG and restores functionality. Selective cell response (attachment, spreading, migration) to the activated ligand on the surface is achieved upon controlled exposure. Spatial and temporal control of the cellular response is demonstrated, including the possibility to in situ activation. Photoactivatable integrin-selective ligands in model microenvironments will allow the study of cellular behavior in response to changes in the activation of individual integrins as consequence of dynamic variations of matrix composition.


2013 ◽  
Vol 40 (10) ◽  
pp. 1070
Author(s):  
Cui-Mi DUAN ◽  
Hong-Yu SUN ◽  
Ye YUAN ◽  
Zhi-Qiang LIU ◽  
Rong-Yu TANG ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 373-380
Author(s):  
Mohammad B. Zendeh ◽  
Vadood Razavilar ◽  
Hamid Mirzaei ◽  
Khosrow Mohammadi

Background: Escherichia coli O157:H7 is one of the most common causes of contamination in Lighvan cheese processing. Using from natural antimicrobial essential oils is applied method to decrease the rate of microbial contamination of dairy products. The present investigation was done to study the antimicrobial effects of Z. multiflora and O. basilicum essential oils on survival of E. coli O157:H7 during ripening of traditional Lighvan cheese. Methods: Leaves of the Z. multiflora and O. basilicum plants were subjected to the Clevenger apparatus. Concentrations of 0, 100 and 200 ppm of the Z. multiflora and 0, 50 and 100 ppm of O. basilicum essential oils and also 103 and 105 cfu/ml numbers of E. coli O157:H7 were used. The numbers of the E. coli O157:H7 bacteria were analyzed during the days 0, 30, 60 and 90 of the ripening period. Results: Z. multiflora and O. basilicum essential oils had considerable antimicrobial effects against E. coli O157:H7. Using the essential oils caused decrease in the numbers of E. coli O157:H7 bacteria in 90th days of ripening (P <0.05). Using from Z. multiflora at concentration of 200 ppm can reduce the survival of E. coli O157:H7 in Lighvan cheese. Conclusion: Using Z. multiflora and O. basilicum essential oils as good antimicrobial agents can reduce the risk of foodborne bacteria and especially E. coli O157:H7 in food products.


2018 ◽  
pp. 1656-1662 ◽  
Author(s):  
Mojtaba Raeisi ◽  
Mohammad Hashemi ◽  
Majid Aminzare ◽  
Asma Afshari ◽  
Tayebeh Zeinali ◽  
...  

Background and Aim: Extending the shelf life of foods is an essential concept in food safety. Most of the time, foods deteriorate through the growth of microorganisms or oxidation process. Essential oils (EOs) derived from plant material have well-documented antioxidant and antibacterial activity. This study aimed to evaluate the effect of Zataria multiflora Boiss EO (ZEO) and Mentha piperita EO (MEO) on the chemical stability of minced meat during storage at 7°C. Materials and Methods: Total phenolic content, β-Carotene bleaching test, ferric reducing antioxidant potential assay, and 2,2-Diphenyl-1-picrylhydrazyl radical scavenging activity were used to determine the antioxidant potential of EOs. Five different groups including control, ZEO 0.3%, ZEO 0.5%, MEO 0.3%, and MEO 0.5% were designed to assess the chemical stability of minced meat by measuring pH, thiobarbituric acid (TBA), total volatile base nitrogen (TVBN), and peroxide value (PV). Results: pH did not have any significant change during storage. TBA values in the control group were significantly higher than the treatment groups, especially from the 5th day of storage. TVBN in the treatment group was significantly lower than the control group during storage. PV values in the treatment group were significantly lower than the control group during storage. Conclusion: Results indicate that ZEO and MEO had an excellent antioxidant activity and retarded the spoilage process in minced meat. Keywords: antioxidant, Mentha piperita, minced meat, Zataria multiflora Boiss.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2021 ◽  
Vol 32 (3) ◽  
pp. 3402-3414
Author(s):  
Young-Hun Kim ◽  
Youn-Jung Heo ◽  
Won-Gun Koh ◽  
Gyojic Shin ◽  
Kyung Ho Choi

Sign in / Sign up

Export Citation Format

Share Document