THE DYNAMIC BEHAVIOR OF A FIXED-BED STEAM-OXYGEN COAL GASIFIER DISTURBED BY WATER INFLUX I. EXPERIMENTAL RESULTS

1987 ◽  
Vol 52 (1-3) ◽  
pp. 109-125 ◽  
Author(s):  
WHASIK MIN ◽  
T.F. EDGAR
2021 ◽  
Vol 11 (2) ◽  
pp. 682
Author(s):  
Gabriele Seitz ◽  
Farid Mohammadi ◽  
Holger Class

Calcium oxide/Calcium hydroxide can be utilized as a reaction system for thermochemical heat storage. It features a high storage capacity, is cheap, and does not involve major environmental concerns. Operationally, different fixed-bed reactor concepts can be distinguished; direct reactor are characterized by gas flow through the reactive bulk material, while in indirect reactors, the heat-carrying gas flow is separated from the bulk material. This study puts a focus on the indirectly operated fixed-bed reactor setup. The fluxes of the reaction fluid and the heat-carrying flow are decoupled in order to overcome limitations due to heat conduction in the reactive bulk material. The fixed bed represents a porous medium where Darcy-type flow conditions can be assumed. Here, a numerical model for such a reactor concept is presented, which has been implemented in the software DuMux. An attempt to calibrate and validate it with experimental results from the literature is discussed in detail. This allows for the identification of a deficient insulation of the experimental setup. Accordingly, heat-loss mechanisms are included in the model. However, it can be shown that heat losses alone are not sufficient to explain the experimental results. It is evident that another effect plays a role here. Using Bayesian inference, this effect is identified as the reaction rate decreasing with progressing conversion of reactive material. The calibrated model reveals that more heat is lost over the reactor surface than transported in the heat transfer channel, which causes a considerable speed-up of the discharge reaction. An observed deceleration of the reaction rate at progressed conversion is attributed to the presence of agglomerates of the bulk material in the fixed bed. This retardation is represented phenomenologically by mofifying the reaction kinetics. After the calibration, the model is validated with a second set of experimental results. To speed up the calculations for the calibration, the numerical model is replaced by a surrogate model based on Polynomial Chaos Expansion and Principal Component Analysis.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1319-1326 ◽  
Author(s):  
I. E. Gönenç ◽  
D. Orhon ◽  
B. Beler Baykal

Two basic phenomena, reactor hydraulics and mass transport through biofilm coupled with kinetic expressions for substrate transformations were accounted for in order to describe the soluble COD removal mechanism in anaerobic fixed bed reactors. To provide necessary verification, experimental results from the long term operation of the pilot scale anaerobic reactor treating molasses wastewater were used. Theoretical evaluations verified by these experimental studies showed that a bulk zero-order removal rate expression modified by diffusional resistance leading to bulk half-order and first-order rates together with the particular hydraulic conditions could adequately define the overall soluble COD removal mechanism in an anaerobic fixed bed reactor. The experimental results were also used to determine the kinetic constants for practical application. In view of the complexity of the phenomena involved it is found remarkable that a simple simulation model based on biofilm kinetics is a powerful tool for design and operation of anaerobic fixed bed reactors.


Author(s):  
Cynthia K. McCurry ◽  
Robert R. Romanosky

This paper describes the experiences leading to successful sampling of hot, contaminated, coal-derived gas streams for alkali constituents using advanced spectrometers. This activity was integrated with a multi-phase, combustion test program which addressed the use of minimally treated, coal-derived fuel gas in gas turbines. Alkali contaminants in coal-derived fuels are a source of concern, as they may induce corrosion of and deposition on turbine components. Real-time measurement of alkali concentrations in gasifier output fuel gas streams is important in evaluating these effects on turbine performance. An automated, dual-channel, flame atomic emission spectrometer was used to obtain on-line measurements of total sodium and potassium mass loadings (vapors and particles) in two process streams at the General Electric fixed-bed coal gasifier and turbine combustor simulator facility in Schenectady, New York. Alkali measurements were taken on (1) slipstreams of high temperature, high pressure, minimally clean, low-Btu fuel gas containing entrained particles from the gasifier and (2) a slipstream of the exhaust gas from the combustor/turbine simulator. Alkali detection limits for the analyzer were found to be on the order of one part per billion. Providing a representative sample to the alkali analyzer at the limited flows required by the instrument was a major challenge of this activity. Several approaches and sampling hardware configurations were utilized with varying degrees of success during this testing campaign. The resulting information formed the basis for a second generation sampling system which has recently been successfully utilized to measure alkali concentrations in slipstreams from the described fixed-bed coal gasifier and turbine combustor simulator.


2014 ◽  
Vol 1035 ◽  
pp. 445-452
Author(s):  
Jian Wang ◽  
Bao Gui Wang ◽  
Gang Tao

For understanding the dynamic behavior of open and closed foam subject to a shock wave, this paper through experiments, to gain a deeper understanding of the incidence, reflection and transmission of a shock wave when it interacted with cellular foam. Moreover, by analyzing the loss of the peak overpressure and positive impulse, we were able to respectively know the positive impulse of the incidence, reflection and transmission shock wave. The experimental results indicated that the attenuation capability for foam to the shock wave was caused by the internal friction and deformation of solid phase, which would absorb the energy of the shock wave. From the results we gain an understanding that the mechanical phenomenon of open foam to shock wave are not fully consistent with those of closed foam , while the attenuation of open foam to shock wave is more effective than that of closed foam.


Author(s):  
Tej Pratap Singh ◽  
Sanjay Ghosh ◽  
Majumder Cb

ABSTRACTObjective: The quality of drinking water is important for public safety and quality of life. Thus, providing every person on earth safe drinking waterseems to be the biggest challenge in front of mankind. For this purpose, here we have investigated the fluoride removal capacity of java plum.Methods: In this study, removal of fluoride from industrial wastewater using fixed-bed reactor adsorption techniques by java plum seed (Syzygiumcumini) was investigated. Fixed-bed column experiments were carried out for different bed depths, influent fluoride concentrations, and various flowrates. The Thomas model and bed depth service time model were applied to the experimental results. Both model predictions verify the experimentaldata for all the process parameters studied, indicating that the models were suitable for java plum (S. cumini) seeds (Biosorbent) fix-bed columndesign.Results: The empty bed residence time (EBRT) model optimizes the EBRT, and the Thomas model showed that the adsorption capacity is stronglydependent on the flow rate, initial fluoride concentration, and bed depth and is greater under conditions of a lower concentration of fluoride, lowerflow rate, and higher bed depth.Conclusion: The experimental results were encouraging and indicate that java plum (S. cumini) seed is a feasible option to use as a biosorbent toremove fluoride in a fixed bed adsorption process.Keywords: Adsorption, Column experiment, Thomas model, Empty bed residence time, Java plum.


Author(s):  
Yoshimasa Komaki ◽  
Nobuyuki Kobayashi ◽  
Masahiro Watanabe

Abstract The dynamic behavior of the flexible beam, which is pulled into the slit of the elastic wall with a constant velocity, is discussed with multibody dynamics formulation and experiments. The vibration of the free tip of a flexible beam increases rapidly as pulling into the slit, and this behavior is called “Spaghetti Problem”. The effect of gap size of the slit on the behavior of Spaghetti Problem is especially focused. Dynamic behavior of the beam is simulated numerically and examined the accuracy of the presented formulation by changing the gap size and the pulling velocity of the beam as parameters. It is clarified that the presented modeling method simulates the experimental results quite well, and the gap size and the pulling velocity influence the increase of the lateral vibration near the inlet of the slit.


Proceedings ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 4 ◽  
Author(s):  
Hadi Ramin ◽  
Easwaran Krishnan ◽  
Carey J. Simonson

Air-to-air energy recovery ventilators (ERVs) are able to reduce the required energy to condition ventilation air in buildings. Among different types of ERVs, fixed-bed regenerators (FBRs) have a higher ratio of heat transfer area to volume. However, there is limited research on FBRs for HVAC applications. This paper presents preliminary experimental and numerical research of FBRs at the University of Saskatchewan. The numerical and experimental results for effectiveness of FBR agree within experimental uncertainty bounds and the results agree with available empirical correlations in the literature.


Sign in / Sign up

Export Citation Format

Share Document