RADIAL TEMPERATURE PROFILE IN THE MODELLING OF AN INDUSTRIAL METHANOL REACTOR

1989 ◽  
Vol 76 (1) ◽  
pp. 93-106
Author(s):  
P. ÁRVA ◽  
F. SZEIFERT ◽  
K. MOSER
Author(s):  
Tang Chian-ti

Taking account of the marine gas turbine operation features, the author has chosen the hot corrosion peak temperature of materials as the guide vane material limiting temperature while evaluating the overall temperature distribution factor. Along with the blade cooling effectiveness a safety margin factor has been introduced during its evaluation. The gas temperature distribution along blade height is assumed to satisfy the condition that approximately equal safety factor in respect of strength prevails along blade height. Once the gas radial temperature profile becomes known, the radial temperature distribution factor can be readily determined.


1969 ◽  
Vol 3 (2) ◽  
pp. 269-280 ◽  
Author(s):  
L. B. Kapp ◽  
P. H. Richards

The problem is to determine the electrical and thermal conductivities of high pressure are plasmas from measurements of the current—voltage characteristics of the are and a single radial temperature profile. A new numerical method is described together with the corresponding computer program. The latter is applied to some recent measurements on wall-stabilized nitrogen ares, covering the temperature range 4500—11,000 °K, for which radiation can be neglected, and the results are compared with those of other workers.


Author(s):  
Khalil Sidawi ◽  
Andrei Vincze ◽  
Rand Abdullah ◽  
Matthew Baldock ◽  
Wargha Peiman ◽  
...  

Current generation water-cooled Nuclear Power Plants (NPPs) have significantly lower thermal efficiencies than their thermal counterparts; due, partially, to their lower turbine-inlet steam temperature. Nuclear steam superheat can be implemented in a generic pressure-channel nuclear reactor to increase the temperature of the steam at the inlet of the turbine, and thus increase the thermal efficiency of a NPP. A heat flux is computed specifically for a stable SuperHeated Steam (SHS) and Pressurized Water (PW) 520 pressure-channel reactor core configuration, from which a unique temperature profile for each coolant (as a bulk fluid) is calculated. Using the coolant temperature profile of each coolant, the sheath temperature distribution is calculated, using Fourier’s law, and the fuel pellets’ axial and radial temperature profiles are determined using an analytical solution to the temperature distribution in a solid with uniform heat generation. Properties of the coolant, sheath, and fuel were calculated based on the temperature (and pressure, in the case of coolant) along the heated length of a channel. The effects on the flow rates and the differences in the required channel powers, due to the addition of the SHS channels, were also considered. To ensure safe operating parameters, the maximum sheath and fuel centerline temperatures were shown to be much lower than the operating limits. The implementation of steam superheat in a generic 1200-MWel pressure-channel nuclear reactor allows for an increase in the temperature of steam at the inlet of a turbine from ∼319°C to ∼550°C, and ultimately an increase in the thermal efficiency of the NPP by about 5–7%.


1988 ◽  
Vol 110 (1) ◽  
pp. 38-43 ◽  
Author(s):  
H. D. Joslyn ◽  
R. P. Dring

An experimental technique to study mixing in a turbine stage is demonstrated. An axisymmetric, radial temperature profile at the inlet to the first stator of a large-scale, low-speed, single-stage, axial flow turbine model is simulated with a radial trace gas concentration distribution. Mixing or redistribution of the inlet profile by three-dimensional aerodynamic mechanisms (other than temperature-driven mechanisms) is determined from trace gas concentration measurements made in both the stationary and rotating frames of reference at various locations through the turbine. The trace gas concentration contours generated are consistent with flow pitch angle measurements made downstream of the first stator and with surface flow visualization on the rotor airfoil and the hub endwall. It is demonstrated that this trace gas technique is well suited to quantify many aspects of the redistribution and diffusion of an inlet temperature profile as it is convected through a turbine stage.


Sign in / Sign up

Export Citation Format

Share Document