scholarly journals Elastic-stiffness coefficients of a silicon carbide fibre at elevated temperatures: Acoustic spectroscopy and micromechanics modelling

Author(s):  
H. Ogi ◽  
S. Kai ◽  
T. Ichitsubo ◽  
M. Hirao ◽  
K. Takashima
2014 ◽  
Vol 1693 ◽  
Author(s):  
David T. Clark ◽  
Robin F. Thompson ◽  
Aled E. Murphy ◽  
David A. Smith ◽  
Ewan P. Ramsay ◽  
...  

ABSTRACTWe present the characteristics of a high temperature CMOS integrated circuit process based on 4H silicon carbide designed to operate at temperatures beyond 300°C. N-channel and P-channel transistor characteristics at room and elevated temperatures are presented. Both channel types show the expected low values of field effect mobility well known in SiC MOSFETS. However the performance achieved is easily capable of exploitation in CMOS digital logic circuits and certain analogue circuits, over a wide temperature range.Data is also presented for the performance of digital logic demonstrator circuits, in particular a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. Devices are packaged in high temperature ceramic dual in line (DIL) packages, which are capable of greater than 300°C operation. A high temperature “micro-oven” system has been designed and built to enable testing and stressing of units assembled in these package types. This system heats a group of devices together to temperatures of up to 300°C while keeping the electrical connections at much lower temperatures. In addition, long term reliability data for some structures such as contact chains to n-type and p-type SiC and simple logic circuits is summarized.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000033-000036 ◽  
Author(s):  
M.H. Weng ◽  
A.D. Murphy ◽  
D.T. Clark ◽  
D.A. Smith ◽  
R.F. Thompson ◽  
...  

The potential to thermally grow SiO2 on silicon carbide has resulted in it becoming the technology of choice to realise high temperature CMOS circuits. The challenge to achieve a high quality gate stack relies on engineering the metal-insulator-semiconductor interfaces to enable reliable high temperature functionality. Here we describe the effect of different process conditions for the formation of the dielectric layer on the characteristics of the resulting devices. The operating characteristics at elevated temperatures depend critically on the quality of the gate stack. Therefore a systematic evaluation of the intrinsic properties of the gate stack and data from reliability tests are needed.


Composites ◽  
1970 ◽  
Vol 1 (5) ◽  
pp. 322 ◽  
Author(s):  
J. Aveston

Sign in / Sign up

Export Citation Format

Share Document