Examining the impact of magnetic field on fuel economy and emission reduction in I.C. engines

Author(s):  
Pralhad Tipole ◽  
A. Karthikeyan ◽  
Virendra Bhojwani ◽  
Suhas Deshmukh ◽  
Harshal Babar ◽  
...  
2013 ◽  
Vol 373-375 ◽  
pp. 2128-2131
Author(s):  
Li Sun ◽  
Zhi Guo Zhao ◽  
Yong Chen Liu ◽  
Yong Qiang Zhong

Under the call of energy conservation and emission reduction in the whole world, the hybrid cars with its good fuel economy become the important vehicle mode. The ordinary passenger is converted into a hybrid passenger, in order to meet the power performance and fuel economy of the hybrid bus and the power control requirements, the ordinary passenger must be modified design mainly equipped with assembly parts. This article mainly design assembly parts arrangement position of the equipped later, and make the front and rear axle load difference of the hybrid passenger and the original passenger be not large, to ensure all performances of the hybrid electric passenger. Then for the whole vehicle arrangement parameters variation, respectively analyze the quality parameters.


2020 ◽  
Vol 2020 (10) ◽  
pp. 4-11
Author(s):  
Victor Tikhomirov ◽  
Aleksandr Gorlenko ◽  
Stanislav Volohov ◽  
Mikhail Izmerov

The work purpose is the investigation of magnetic field impact upon properties of friction steel surfaces at fit stripping with tightness through manifested effects and their wear visually observed. On the spots of a real contact the magnetic field increases active centers, their amount and saturation with the time of dislocation outlet, and has an influence upon tribo-mating. The external electro-magnetic field promotes the increase of the number of active centers at the expense of dislocations outlet on the contact surface, and the increase of a physical contact area results in friction tie strengthening and growth of a friction factor. By the example of friction pairs of a spentonly unit in the suspension of coach cars there is given a substantiation of actuality and possibility for the creation of technical devices with the controlled factor of friction and the stability of effects achieved is also confirmed experimentally. Investigation methods: the fulfillment of laboratory physical experiments on the laboratory plant developed and patented on bush-rod samples inserted with the fit and tightness. The results of investigations and novelty: the impact of the magnetic field upon the value of a stripping force of a press fit with the guaranteed tightness is defined. Conclusion: there is a possibility to control a friction factor through the magnetic field impact upon a friction contact.


Author(s):  
SV Yarushin ◽  
DV Kuzmin ◽  
AA Shevchik ◽  
TM Tsepilova ◽  
VB Gurvich ◽  
...  

Introduction: Key issues of assessing effectiveness and economic efficiency of implementing the Federal Clean Air Project by public health criteria are considered based on the example of the Comprehensive Emission Reduction Action Plan realized in the city of Nizhny Tagil, Sverdlovsk Region. Materials and methods: We elaborated method approaches and reviewed practical aspects of evaluating measures taken in 2018–2019 at key urban industrial enterprises accounting for 95 % of stationary source emissions. Results: Summary calculations of ambient air pollution and carcinogenic and non-carcinogenic inhalation health risks including residual risks, evaluation of the impact of air quality on urban mortality and morbidity rates, economic assessment of prevented morbidity and premature mortality cases have enabled us not only to estimate health effects but also to develop guidelines for development and implementation of actions aimed at enhancing effectiveness and efficiency of industrial emission reduction in terms of health promotion of the local population. Conclusions: We substantiate proposals for the necessity and sufficiency of taking remedial actions ensuring achievement of acceptable health risk levels as targets of the Comprehensive Emission Reduction Action Plan in Nizhny Tagil until 2024 and beyond.


Author(s):  
KHOPUNOV EDUARD AFANAS'EVICH ◽  
◽  
SHATAILOV IURII LEONIDOVICH ◽  
VORONCHIKHIN SERGEI LEONIDOVICH ◽  
SHATAILOV ALEKSANDR IUR'EVICH ◽  
...  
Keyword(s):  

2020 ◽  
Vol 30 (6) ◽  
pp. 353-361
Author(s):  
Rebecca S. Dewey ◽  
Rachel Gomez ◽  
Chris Degg ◽  
David M. Baguley ◽  
Paul M. Glover

The sensation of phantom motion or exhibition of bodily sway is often reported in the proximity of an MR scanner. It is proposed that the magnetic field stimulates the vestibular system. There are a number of possible mechanisms responsible, and the relative contributions of susceptibility on the otolithic receptors and the Lorentz force on the cupulae have not yet been explored. This exploratory study aims to investigate the impact of being in the proximity of a 7.0 T MR scanner. The modified clinical test of sensory interaction on balance (mCTSIB) was used to qualitatively ascertain whether or not healthy control subjects who passed the mCTSIB in normal conditions 1) experienced subjective sensations of dizziness, vertigo or of leaning or shifting in gravity when in the magnetic field and 2) exhibited visibly increased bodily sway whilst in the magnetic field compared to outside the magnetic field. Condition IV of the mCTSIB was video recorded outside and inside the magnetic field, providing a semi-quantitative measure of sway. For condition IV of the mCTSIB (visual and proprioceptive cues compromised), all seven locations/orientations around the scanner yielded significantly more sway than at baseline (p < 0.01 FDR). A Student’s t-test comparing the RMS velocity of a motion marker on the upper arm during mCTSIB condition IV showed a significant increase in the amount of motion exhibited in the field (T = 2.59; d.f. = 9; p = 0.029) compared to outside the field. This initial study using qualitative measures of sway demonstrates that there is evidence for MR-naïve individuals exhibiting greater sway while performing the mCTSIB in the magnetic field compared to outside the field. Directional polarity of sway was not significant. Future studies of vestibular stimulation by magnetic fields would benefit from the development of a sensitive, objective measure of balance function, which can be performed inside a magnetic field.


2019 ◽  
Vol 20 (5) ◽  
pp. 502 ◽  
Author(s):  
Aaqib Majeed ◽  
Ahmed Zeeshan ◽  
Farzan Majeed Noori ◽  
Usman Masud

This article is focused on Maxwell ferromagnetic fluid and heat transport characteristics under the impact of magnetic field generated due to dipole field. The viscous dissipation and heat generation/absorption are also taken into account. Flow here is instigated by linearly stretchable surface, which is assumed to be permeable. Also description of magneto-thermo-mechanical (ferrohydrodynamic) interaction elaborates the fluid motion as compared to hydrodynamic case. Problem is modeled using continuity, momentum and heat transport equation. To implement the numerical procedure, firstly we transform the partial differential equations (PDEs) into ordinary differential equations (ODEs) by applying similarity approach, secondly resulting boundary value problem (BVP) is transformed into an initial value problem (IVP). Then resulting set of non-linear differentials equations is solved computationally with the aid of Runge–Kutta scheme with shooting algorithm using MATLAB. The flow situation is carried out by considering the influence of pertinent parameters namely ferro-hydrodynamic interaction parameter, Maxwell parameter, suction/injection and viscous dissipation on flow velocity field, temperature field, friction factor and heat transfer rate are deliberated via graphs. The present numerical values are associated with those available previously in the open literature for Newtonian fluid case (γ 1 = 0) to check the validity of the solution. It is inferred that interaction of magneto-thermo-mechanical is to slow down the fluid motion. We also witnessed that by considering the Maxwell and ferrohydrodynamic parameter there is decrement in velocity field whereas opposite behavior is noted for temperature field.


Author(s):  
Sandro P. Nüesch ◽  
Anna G. Stefanopoulou ◽  
Li Jiang ◽  
Jeffrey Sterniak

Highly diluted, low temperature homogeneous charge compression ignition (HCCI) combustion leads to ultra-low levels of engine-out NOx emissions. A standard drive cycle, however, would require switches between HCCI and spark-ignited (SI) combustion modes. In this paper a methodology is introduced, investigating the fuel economy of such a multimode combustion concept in combination with a three-way catalytic converter (TWC). The TWC needs to exhibit unoccupied oxygen storage sites in order to show acceptable performance. But the lean exhaust gas during HCCI operation fills the oxygen storage and leads to a drop in NOx conversion efficiency. Eventually the levels of NOx become unacceptable and a mode switch to a fuel rich combustion mode is necessary in order to deplete the oxygen storage. The resulting lean-rich cycling leads to a penalty in fuel economy. In order to evaluate the impact of those penalties on fuel economy, a finite state model for combustion mode switches is combined with a longitudinal vehicle model and a phenomenological TWC model, focused on oxygen storage. The aftertreatment model is calibrated using combustion mode switch experiments from lean HCCI to rich spark-assisted HCCI and back. Fuel and emissions maps acquired in steady state experiments are used. Two depletion strategies are compared in terms of their influence on drive cycle fuel economy and NOx emissions.


Author(s):  
Е.И. Виневский ◽  
А.В. Чернов

Исследовано влияние параметров градиентного воздействия постоянного магнитного поля (ПМП) на интенсификацию процесса томления табачных листьев. Выдвинута рабочая гипотеза о том, что для стимулирования процесса томления листьев табака необходимо градиентное воздействие на них ПМП, возникающее в результате перемещения листьев относительно системы постоянных магнитов. Введено понятие приведенного коэффициента убыли влаги, равное отношению влажности обработанных листьев к влажности контрольных образцов – необработанных листьев. Установлено, что при использовании точечного градиентного воздействия ПМП на среднюю жилку табачных листьев частотой 0,3 Гц и продолжительности обработки в течение 115–125 с при высоте расположения магнитов 25 мм процесс томления листьев ускоряется на 28,8% в сравнении с контролем. При линейном градиентном воздействии ПМП на табачный лист с частотой 0,3 Гц процесс томления ускоряется на 4,7–15,5% в зависимости от продолжительности обработки (10–40 с). При увеличении продолжительности обработки до 80 с процесс томления листьев табака замедлился. Установлено максимальное ускорение процесса томления листьев табака: при точечном градиентном воздействии ПМП на среднюю жилку табачного листа частотой 0,3 Гц и продолжительности обработки в течение 115–125 с; при линейном градиентном воздействии ПМП на табачный лист частотой 0,3 Гц и продолжительности обработки в течение 55–65 с. The influence of the parameters of the gradient effect of a constant magnetic field (CMF) on the intensification of the process of languishing tobacco leaves is studied. A working hypothesis is put forward that to stimulate the process of tobacco languor, it is necessary to have a gradient effect on them of CMF, which occurs as a result of the movement of leaves relative to the system of permanent magnets. The concept of the reduced coefficient of moisture loss is introduced, which is equal to the ratio of the humidity of treated leaves to the humidity of control samples-untreated leaves. It was found that when using a point gradient effect of CMF on the middle vein of tobacco leaves with a frequency of 0,3 Hz and a duration of processing for 115–125 s at the height of the magnets of 25 mm, the process of leaf languor is accelerated by 28,8% in comparison with the control. When the linear gradient effect of CMF on the tobacco leaf with a frequency of 0,3 Hz, the languor process is accelerated by 4,7–15,5%, depending on the duration of treatment (10–40 s). In the future, with an increase in the processing time to 80 s, the process of languishing tobacco leaves slowed down. The maximum acceleration of the process of languishing tobacco leaves is established: for spot gradient effect of CMF on the mid-veins of tobacco leaf frequency of 0,3 Hz and duration of treatment for 115–125 s; a linear gradient in the impact of CMF on the tobacco sheet with a treatment frequency of 0,3 Hz and duration of treatment for 55–65 s.


Space Weather ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 1721-1739 ◽  
Author(s):  
Matthew A. Grawe ◽  
Jonathan J. Makela ◽  
Mark D. Butala ◽  
Farzad Kamalabadi

Sign in / Sign up

Export Citation Format

Share Document