The relationship between aerosol backscatter coefficient and atmospheric relative humidity in an urban area over Athens, Greece, using Raman lidar and radiosonde data

2011 ◽  
Vol 32 (24) ◽  
pp. 8983-9006 ◽  
Author(s):  
N. Angelou ◽  
A. Papayannis ◽  
R. E. Mamouri ◽  
V. Amiridis ◽  
G. Tsaknakis
2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


2021 ◽  
Vol 21 (3) ◽  
pp. 2267-2285
Author(s):  
Simone Brunamonti ◽  
Giovanni Martucci ◽  
Gonzague Romanens ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
...  

Abstract. Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (βaer) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in situ measurements of βaer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to 455 and 940 nm, respectively, using the Ångström exponent profiles retrieved from COBALD data. To account for the different receiver field-of-view (FOV) angles between the two lidars (0.01–0.02∘) and COBALD (6∘), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both lidar instruments achieve on average a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude. For medium-high-aerosol-content measurements at altitudes below 3 km, the mean ± standard deviation difference in βaer calculated from all considered soundings is −2 % ± 37 % (−0.018 ± 0.237 Mm−1 sr−1 at 455 nm) for RALMO−COBALD and +5 % ± 43 % (+0.009 ± 0.185 Mm−1 sr−1 at 940 mm) for CHM15K−COBALD. Above 3 km altitude, absolute deviations generally decrease, while relative deviations increase due to the prevalence of air masses with low aerosol content. Uncertainties related to the FOV correction and spatial- and temporal-variability effects (associated with the balloon's drift with altitude and different integration times) contribute to the large standard deviations observed at low altitudes. The lack of information on the aerosol size distribution and the high atmospheric variability prevent an accurate quantification of these effects. Nevertheless, the excellent agreement observed in individual profiles, including fine and complex structures in the βaer vertical distribution, shows that under optimal conditions, the discrepancies with the in situ measurements are typically comparable to the estimated statistical uncertainties in the remote-sensing measurements. Therefore, we conclude that βaer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in situ measurements by COBALD sondes up to 6 km altitude.


2019 ◽  
Author(s):  
Francisco Navas Guzmán ◽  
Giovanni Martucci ◽  
Martine Collaud Coen ◽  
María José Granados Muñoz ◽  
Maxime Hervo ◽  
...  

Abstract. This study focuses on the analysis of aerosol hygroscopicity using remote sensing technique. Continuous observations of aerosol backscatter coefficient, temperature and water vapour mixing ratio are performed by means of a Raman lidar system at the aerological station of MeteoSwiss at Payerne (Switzerland) since 2008. These measurements allow us to monitor in a continuous way any change of aerosol properties as a function of the relative humidity (RH). These changes can be observed either in time at constant altitude or in altitude at a constant time. The accuracy and precision of RH measurements from the lidar have been evaluated using the radiosonde (RS) technique as reference. A total of 172 RSs were used in this intercomparison which revealed a small bias (


2011 ◽  
Vol 112 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Yufeng Wang ◽  
Dengxin Hua ◽  
Jiandong Mao ◽  
Li Wang ◽  
Yaoke Xue

2013 ◽  
Vol 6 (6) ◽  
pp. 10481-10510
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign performed in Summer and Autumn 2011 are presented. The water vapour profiles measured during nighttime by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Moreover, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during one year of simultaneous measurements is presented.


2020 ◽  
Author(s):  
Simone Brunamonti ◽  
Giovanni Martucci ◽  
Gonzague Romanens ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
...  

Abstract. Remote sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here, we validate vertical profiles of aerosol backscatter coefficient (βaer) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in-situ measurements of βaer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to respectively 455 nm and 940 nm using the Angstrom exponent profiles retrieved from COBALD data. To account for the different receiver field of view (FOV) angles between the two lidars (0.01–0.02°) and COBALD (6°), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both RALMO and CHM15K achieve a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude, and including fine structures in the aerosol’s vertical distribution. For altitudes below 2 km, the mean ± standard deviation difference in βaer is + 6 % ± 40 % (+ 0.005 ± 0.319 Mm−1 sr−1) for RALMO – COBALD at 455 nm, and + 13 % ± 51 % (+ 0.038 ± 0.207 Mm−1 sr−1) for CHM15K – COBALD at 940 nm. The large standard deviations can be at least partly attributed to atmospheric variability effects, associated with the balloon’s horizontal drift with altitude (away from the lidar beam) and the different integration times of the two techniques. Combined with the high spatial and temporal variability of atmospheric aerosols, these effects often lead to a slight altitude displacement between aerosol backscatter features that are seen by both techniques. For altitudes between 2–6 km, the absolute standard deviations of both RALMO and CHM15K decrease (below 0.13 and 0.16 Mm−1sr−1, respectively), while their corresponding relative deviations increase (often exceeding 100 % COBALD of the signal). This is due to the low aerosol content (i.e. low absolute backscattered signal) in the free troposphere, and the vertically decreasing signal-to-noise ratio of the lidar measurements (especially CHM15K). Overall, we conclude that the βaer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in-situ measurements by COBALD sondes up to 6 km altitude.


2014 ◽  
Vol 7 (2) ◽  
pp. 1393-1455
Author(s):  
X. J. Sun ◽  
R. W. Zhang ◽  
G. J. Marseille ◽  
A. Stoffelen ◽  
D. Donovan ◽  
...  

Abstract. The ESA Aeolus mission aims to measure wind profiles from space. In preparation for launch we aim to assess the expected bias in retrieved winds from the Mie and Rayleigh channel signals induced by atmospheric heterogeneity. Observation biases are known to be detrimental when gone undetected in Numerical Weather Prediction (NWP). Aeolus processing equipment should therefore be prepared to detect heterogeneous atmospheric scenes and take measures, e.g., reject or reduce the weight of observations when used in NWP. Radiosondes provide the wind vector at about 10 m resolution. We present a method to simulate co-located cloud and aerosol optical properties from radiosonde observations. We show that cloud layers can be detected along the radiosonde path from radiosonde measured relative humidity and temperature. A parameterization for aerosol backscatter and extinction along the radiosonde path is presented based on a climatological aerosol backscatter profile and radiosonde relative humidity. The resulting high-resolution database of atmospheric wind and optical properties serves as input for Aeolus wind simulations. It is shown that Aeolus wind error variance grows quadratically with bin size and the wind-shear over the bin. Strong scattering aerosol or cloud layers may cause biases exceeding 1ms−1 for typical tropospheric conditions and 1 km Mie channel bin size, i.e., substantially larger than the mission bias requirement of 0.4 ms−1. Advanced level-2 processing of Aeolus winds including estimation of atmosphere optical properties is needed to detect regions with large heterogeneity, potentially yielding biased winds. Besides applicable for Aeolus the radiosonde database of co-located high-resolution wind and cloud information can be used for the validation of atmospheric motion wind vectors (AMV) or to correct their height assignment errors.


2009 ◽  
Author(s):  
Yufeng Wang ◽  
Dengxin Hua ◽  
Jiandong Mao ◽  
Li Wang ◽  
Shichun Li ◽  
...  

2013 ◽  
Vol 13 (9) ◽  
pp. 4983-4996 ◽  
Author(s):  
M. Pandolfi ◽  
G. Martucci ◽  
X. Querol ◽  
A. Alastuey ◽  
F. Wilsenack ◽  
...  

Abstract. Continuous measurements of surface mixed layer (SML), decoupled residual/convective layer (DRCL) and aerosol backscatter coefficient were performed within the Barcelona (Spain) boundary layer from September to October 2010 (30 days) in the framework of the SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies) field campaign. Two near-infrared ceilometers (Jenoptik CHM15K), vertically and horizontally probing (only vertical profiles are herein discussed), were deployed. Ceilometer-based DRCLs (1761 ± 363 m a.g.l.) averaged over the campaign duration were twice as high as the mean SML (904 ± 273 m a.g.l.). Both DRCL and SML showed a marked SML diurnal cycle. Ceilometer data were compared with potential temperature profiles measured by daily radiosounding (twice a day, midnight and midday) to interpret the boundary layer structure in the coastal urban area of Barcelona. The overall agreement (R2 = 0.80) between the ceilometer-retrieved and radiosounding-based SML heights (h) revealed overestimation of the SML by the ceilometer (Δh=145 ± 145 m). After separating the data in accordance with different atmospheric scenarios, the lowest SML (736 ± 183 m) and DRCL (1573 ± 428 m) were recorded during warm North African (NAF) advected air mass. By contrast, higher SML and DRCL were observed during stagnant Regional (REG) (911 ± 234 m and 1769 ± 314 m, respectively) and cold Atlantic (ATL) (965 ± 222 m and 1878 ± 290 m, respectively) air masses. In addition to being the lowest, the SML during the NAF scenario frequently showed a flat upper boundary throughout the day possibly because of the strong winds from the Mediterranean Sea limiting the midday SML convective growth. The mean backscatter coefficients were calculated at two selected heights representative of middle and top SML portions, i.e. β500 = 0.59 ± 0.45 Mm−1 sr−1 and β800 = 0.87 ± 0.68 Mm−1 sr−1 at 500 m and 800 m a.g.l., respectively. The highest backscatter coefficients were observed during NAF (β500 = 0.77 ± 0.57 Mm−1 sr−1) when compared with ATL (β500 = 0.51 ± 0.44 Mm−1 sr−1) and REG (β500 = 0.64 ± 0.39 Mm−1 sr−1). The relationship between the vertical change in backscatter coefficient and atmospheric stability (∂θ/∂z) was investigated in the first 3000 m a.g.l., aiming to study how the unstable, stable or neutral atmospheric conditions of the atmosphere alter the distribution of aerosol backscatter with height over Barcelona. A positive correlation between unstable conditions and enhanced backscatter and vice versa was found.


Sign in / Sign up

Export Citation Format

Share Document