Analysis of Nitrogen and Phosphorus Input and Output Characteristics and Use Efficiency in Pear Tree–Upland Rice Intercropping Systems

2005 ◽  
Vol 28 (12) ◽  
pp. 2125-2143
Author(s):  
Zhang Fang ◽  
Yang Jingping ◽  
Wu Ronglan ◽  
Mei Daoliang
2019 ◽  
pp. 178-185
Author(s):  
Bethel Nekir

Wastes produced from sugarcane industries are organic in nature, and it augmented the soil properties as well as improves crop yield and quality. In 2016 field experiment was conducted to investigate effect of filter cake and bagasse for nitrogen and phosphorus use efficiency of upland rice grown on calcareous sodic soils of Amibara District. The result revealed that plant nutrient use efficiency indices agronomic efficiency, agrophysiological efficiency and apparent recovery efficiency of both nitrogen and phosphorus were significantly (P<0.05) affected by the application of filter cake and bagasse. The maximum nitrogen was recovered at 20 t ha-1 filter cake followed by combined application of 10 t ha-1 bagasse + 20 t ha-1 FC that gave 45.10 % from kg quantity of nitrogen uptake per unit of kg nutrient applied. But, the minimum nitrogen recovery efficiency was recorded at 20 t ha-1 bagasse + 20 t ha-1 filter cake. The Phosphorus apparent recovery efficiency ranged from 18.55- 32.91 %. The interaction of filter cake with bagasse also highly significantly (P < 0.01) affected rice grain yield. It can be encouraged to use these wastes with combination of inorganic chemical fertilizers under various cropping systems to enhance nutrient availability to plant under calcareous sodic soil.


2019 ◽  
Vol 231 ◽  
pp. 10-17 ◽  
Author(s):  
Dianjun Lu ◽  
Hang Song ◽  
Shangtao Jiang ◽  
Xiaoqin Chen ◽  
Huoyan Wang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2396
Author(s):  
Muhammad Yaseen ◽  
Adeel Ahmad ◽  
Muhammad Naveed ◽  
Muhammad Asif Ali ◽  
Syed Shahid Hussain Shah ◽  
...  

Nitrogen (N) is an essential plant nutrient, therefore, N-deficient soils affect plant growth and development. The excessive and unwise application of N fertilizers result in nutrient losses and lower nutrient use efficiency that leads to the low crop productivity. Ammonia volatilization causes a major loss after N fertilization that causes environmental pollution. This experiment was conducted to evaluate the effectiveness of coating and uncoating N fertilizer in enhancing yield and nutrient-use efficiency with reduced ammonia emissions. The recommended rate of nitrogen and phosphorus, urea and di-ammonium phosphate (DAP) fertilizers were coated manually with 1% polymer solution. DAP (coated/uncoated) and potassium were applied at the time of sowing as subsurface application. While urea (coated/uncoated) was applied as surface and subsurface application. Results showed that nutrient use efficiencies of wheat were found to be maximum with the subsurface application of coated N fertilizer which increased nutrient-use efficiency by 44.57 (N), 44.56 (P) and 44.53% (K) higher than the surface application of uncoated N fertilizer. Ammonia emissions were found the lowest with subsurface-applied coated N fertilizer. Thus, coated fertilizer applied via subsurface was found the best technique to overcome the ammonia volatilization with an improvement in the yield and nutrient-use efficiency of wheat.


2019 ◽  
Vol 205 (6) ◽  
pp. 635-646 ◽  
Author(s):  
Therese M. McBeath ◽  
Vadakattu V. S. R. Gupta ◽  
Rick S. Llewellyn ◽  
Sean D. Mason ◽  
Christopher W. Davoren ◽  
...  

2020 ◽  
Vol 271 ◽  
pp. 122700 ◽  
Author(s):  
Gulab Singh Yadav ◽  
Subhash Babu ◽  
Anup Das ◽  
K.P. Mohapatra ◽  
Raghavendra Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document