An environmental friendly superabsorbent composite based on rice husk as soil amendment to improve plant growth and water productivity under deficit irrigation conditions

2020 ◽  
pp. 1-13
Author(s):  
Mohamed Rashad ◽  
El-Refaie Kenawy ◽  
Ali Hosny ◽  
Mohamed Hafez ◽  
Maha Elbana
Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 607 ◽  
Author(s):  
Alvar-Beltrán ◽  
Dao ◽  
Marta ◽  
Saturnin ◽  
Casini ◽  
...  

Drought, heat stress, and unfavorable soil conditions are key abiotic factors affecting quinoa’s growth and development. The aim of this research was to examine the effect of progressive drought and N-fertilization reduction on short-cycle varieties of quinoa (c.v. Titicaca) for different sowing dates during the dry season (from October to December). A two-year experimentation (2017–2018 and 2018–2019) was carried out in Burkina Faso with four levels of irrigation (full irrigation—FI, progressive drought—PD, deficit irrigation—DI and extreme deficit irrigation—EDI) and four levels of N-fertilization (100, 50, 25, and 0 kg N ha−1). Plant phenology and development, just like crop outputs in the form of yield, biomass, and quality of the seeds were evaluated for different sowing dates having different temperature ranges and photoperiodicity. Crop water productivity (CWP) function was used for examining plant’s water use efficiency under drought stress conditions. Emerging findings have shown that CWP was highest under DI and PD (0.683 and 0.576 kg m−3, respectively), while highest yields were observed in 2017–2018 under PD and its interaction with 25 to 50 kg N ha−1 (1356 and 1110 kg ha−1, respectively). Mean temperatures close to 25 °C were suitable for optimal plant growth, while extreme temperatures at anthesis limited the production of grains. Small changes in photoperiodicity from different sowing dates were not critical for plant growth.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492c-492
Author(s):  
Chris Ely ◽  
Mark A. Hubbard

Azomite is a mined, commercially available, hydrated sodium calcium aluminosiliclate soil amendment reported to act as a source of mineral elements. To determine its effect on plant growth, Dendranthema `Connie' rooted cuttings, Malus seedlings, and Citrus seedlings were grown in containers in one of two growing media: ProMix BX or ProMix BX with Azomite (1:1, v:v). Plant height was monitored weekly and after 6 weeks of growth, fresh and dry plant weights of roots and shoots were determined. There was no difference in any of the parameters measured as a result of the addition of Azomite. Any nutritional influence of the Azomite may only be evident in different conditions, e.g., field soil, or over an extended period of time. The Azomite altered the medium's physical properties and therefore bulk density and water-holding capacity of the Azomite were determined for consideration.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 756
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Ahmed S. M. El-Kholy ◽  
Mohamed M. A. Ali ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water shortage is a major environmental stress that destructively impacts maize production, particularly in arid regions. Therefore, improving irrigation management and increasing productivity per unit of water applied are needed, especially under the rising temperature and precipitation fluctuations induced by climate change. Laboratory and field trials were carried out in the present study, which were aimed at assessing the possibility of promoting maize germination, growth, grain yield and crop water productivity (CWP) using seed priming under different irrigation regimes. Two seed priming treatments, i.e., hydro-priming and hardening versus unprimed seeds, were applied under four irrigation regimes, i.e., 120, 100, 80 and 60% of estimated crop evapotranspiration (ETc). The obtained results indicated that increasing irrigation water from 100% up to 120% ETc did not significantly increase grain yield or contributing traits, while it decreased CWP. Deficit irrigation of 80 and 60% ETc gradually decreased grain yield and all attributed traits. Seed priming significantly ameliorated seedlings’ vigor as indicated by earlier germination, higher germination percentage, longer roots and shoots, and heavier fresh and dry weight than unprimed seeds with the superiority of hardening treatment. Additionally, under field conditions, seed priming significantly increased grain yield, yield contributing traits and CWP compared with unprimed treatment. Interestingly, the results reflect the role of seed priming, particularly hardening, in mitigating negative impacts of drought stress and enhancing maize growth, grain yield and attributed traits as well as CWP under deficit irrigation conditions. This was demonstrated by a significant increase in grain yield and CWP under moderate drought and severe drought conditions compared with unprimed treatment. These results highlight that efficient irrigation management and seed priming can increase maize yield and water productivity in arid environments.


2021 ◽  
Vol 249 ◽  
pp. 106812
Author(s):  
Ahmed Attia ◽  
Salah El-Hendawy ◽  
Nasser Al-Suhaibani ◽  
Majed Alotaibi ◽  
Muhammad Usman Tahir ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1291
Author(s):  
Nasr M. Abdou ◽  
Mohamed A. Abdel-Razek ◽  
Shimaa A. Abd El-Mageed ◽  
Wael M. Semida ◽  
Ahmed A. A. Leilah ◽  
...  

Sustainability of rice production under flooding conditions has been challenged by water shortage and food demand. Applying higher nitrogen fertilization could be a practical solution to alleviate the deleterious effects of water stress on lowland rice (Oryza sativa L.) in semi-arid conditions. For this purpose, field experiments were conducted during the summer of 2017 and 2018 seasons. These trials were conducted as split-split based on randomized complete blocks design with soil moisture regimes at three levels (120, 100 and 80% of crop evapotranspiration (ETc), nitrogen fertilizers at two levels (N1—165 and N2—200 kg N ha−1) and three lowland Egyptian rice varieties [V1 (Giza178), V2 (Giza177) and V3 (Sakha104)] using three replications. For all varieties, growth (plant height, tillers No, effective tillers no), water status ((relative water content RWC, and membrane stability index, MSI), physiological responses (chlorophyll fluorescence, Relative chlorophyll content (SPAD), and yield were significantly increased with higher addition of nitrogen fertilizer under all water regimes. Variety V1 produced the highest grain yield compared to other varieties and the increases were 38% and 15% compared with V2 and V3, respectively. Increasing nitrogen up to 200 kg N ha−1 (N2) resulted in an increase in grain and straw yields by 12.7 and 18.2%, respectively, compared with N1. The highest irrigation water productivity (IWP) was recorded under I2 (0.89 kg m−3) compared to (0.83 kg m−3) and (0.82 kg m−3) for I1 and I3, respectively. Therefore, the new applied agro-management practice (deficit irrigation and higher nitrogen fertilizer) effectively saved irrigation water input by 50–60% when compared with the traditional cultivation method (flooding system). Hence, the new proposed innovative method for rice cultivation could be a promising strategy for enhancing the sustainability of rice production under water shortage conditions.


Author(s):  
L. M. Manici ◽  
F. Caputo ◽  
G. A. Cappelli ◽  
E. Ceotto

Abstract Soil suppressiveness which is the natural ability of soil to support optimal plant growth and health is the resultant of multiple soil microbial components; which implies many difficulties when estimating this soil condition. Microbial benefits for plant health from repeated digestate applications were assessed in three experimental sites surrounding anaerobic biogas plants in an intensively cultivated area of northern Italy. A 2-yr trial was performed in 2017 and 2018 by performing an in-pot plant growth assay, using soil samples taken from two fields for each experimental site, of which one had been repeatedly amended with anaerobic biogas digestate and the other had not. These fields were similar in management and crop sequences (maize was the recurrent crop) for the last 10 yr. Plant growth response in the bioassay was expressed as plant biomass production, root colonization frequency by soil-borne fungi were estimated to evaluate the impact of soil-borne pathogens on plant growth, abundance of Pseudomonas and actinomycetes populations in rhizosphere were estimated as beneficial soil microbial indicators. Repeated soil amendment with digestate increased significantly soil capacity to support plant biomass production as compared to unamended control in both the years. Findings supported evidence that this increase was principally attributable to a higher natural ability of digestate-amended soils to reduce root infection by saprophytic soil-borne pathogens whose inoculum was increased by the recurrent maize cultivation. Pseudomonas and actinomycetes were always more abundant in digestate-amended soils suggesting that both these large bacterial groups were involved in the increase of their natural capacity to control soil-borne pathogens (soil suppressiveness).


Plant Stress ◽  
2021 ◽  
Vol 1 ◽  
pp. 100004
Author(s):  
Ved Parkash ◽  
Sukhbir Singh ◽  
Sanjit K. Deb ◽  
Glen L. Ritchie ◽  
Russell W. Wallace

Sign in / Sign up

Export Citation Format

Share Document