Effects of Series Elasticity on the Human Knee Extension Torque-Angle Relationship in Vivo

2006 ◽  
Vol 77 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Keitaro Kubo ◽  
Kazuya Ohgo ◽  
Ryuichi Takeishi ◽  
Kazunari Yoshinaga ◽  
Naoya Tsunoda ◽  
...  
2003 ◽  
Vol 105 (5) ◽  
pp. 585-589 ◽  
Author(s):  
Karin GERRITS ◽  
Inge GOMMANS ◽  
Baziel VAN ENGELEN ◽  
Arnold DE HAAN

Nemaline myopathy is a congenital neuromuscular disorder, which primarily affects the thin filaments. Clinically the most important feature is muscle weakness; however, this weakness is poorly understood. The present investigation aimed to determine the torque angle relationship of the knee extensor muscles during in vivo muscle contractions in a family with a novel phenotype of nemaline myopathy. The results of this study show that quadriceps weakness occurs predominantly at higher knee flexion angles, but relatively normal strength was found at angles closer to full knee extension. When the relative torque angle relationships were considered, torque loss at smaller than optimum knee flexion angle was greater in the patients compared with the controls. In addition, the optimum angle for maximal quadriceps torque production was shifted towards smaller knee flexion angles in the patients. This suggests that a weakness specifically at higher knee flexion angles probably occurs as a result of adaptations consequently to the disease. Furthermore, it is important to assess muscle function at different joint positions to allow adequate interpretation of muscle weakness.


2005 ◽  
Vol 21 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Keitaro Kubo ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n= 23) and ankle plantar flexion (n= 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 ± 2.8%) was significantly greater than that of the patella tendon (8.3 ± 2.4%),p< 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 ± 1.4%) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 ± 1.4%),p< 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.


1981 ◽  
Vol 51 (3) ◽  
pp. 750-754 ◽  
Author(s):  
V. J. Caiozzo ◽  
J. J. Perrine ◽  
V. R. Edgerton

Seventeen male and female subjects (ages 20–38 yr) were tested pre- and posttraining for maximal knee extension torque at seven specific velocities (0, 0.84, 1.68, 2.51, 3.35, 4.19, and 5.03 rad . s-1) with an isokinetic dynamometer. Maximal knee extension torques were recorded at a specific joint angle (0.52 rad below the horizontal plane) for all test speeds. Subjects were randomly assigned to one of three experimental groups: group A, control, n = 7; group B, training at 1.68 rad . s-1, n = 5; or group C, training at 4.19 rad . s-1, n = 5. Subjects trained the knee extensors by performing two sets of 10 single maximal voluntary efforts three times a week for 4 wk. Before training, each training group exhibited a leveling-off of muscular tension in the slow velocity-high force region of the in vivo force-velocity relationship. Training at 1.68 rad . s-1 resulted in significant (P less than 0.05) improvements at all velocities except for 5.03 rad . s-1 and markedly affected the leveling-off in the slow velocity-high force region. Training at 4.19 rad . s-1 did not affect the leveling-off phenomenon but brought about significant improvements (P less than 0.05) at velocities of 2.51, 3.35, and 4.19 rad . s-1. The changes seen in the leveling-off phenomenon suggest that training at 1.68 rad . s-1 might have brought about an enhancement of motoneuron activation.


2002 ◽  
Vol 92 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Maikutlo B. Kebaetse ◽  
Amanda E. Turner ◽  
Stuart A. Binder-Macleod

The purpose of this paper was to determine the effects of stimulation pattern and frequency on repetitive human knee movements. Quadriceps femoris muscles were stimulated against a load equal to 10% of each subject's maximum voluntary isometric force. The main variable of interest was the number of repetitions in which the leg reached a target angle of 40° of knee extension. Sixteen different trains were tested, including 1) six constant-frequency trains with frequencies ranging from 9 to 100 Hz, 2) five variable-frequency trains with an initial 5-ms triplet and mean frequencies ranging from 11 to 35 Hz, and 3) five doublet-frequency trains, which used doublets (2 pulses with a 5-ms interpulse interval) to replace single pulses, with mean frequencies of 17–57 Hz. Testing was stopped when the subject failed to reach the target angle for three consecutive activations. Results showed that no single pattern was best for all subjects. The 33- and 100-Hz constant-frequency trains, 35-Hz variable-frequency trains, and 27- and 36-Hz doublet frequency trains each met the target the most times for some subjects. The results showed that, under our testing conditions, higher frequency trains were better suited for producing repetitive knee movements than lower frequency trains.


2013 ◽  
Vol 26 (11) ◽  
pp. 1412-1419 ◽  
Author(s):  
Nikita Garnov ◽  
Wilfried Gründer ◽  
Gregor Thörmer ◽  
Robert Trampel ◽  
Robert Turner ◽  
...  
Keyword(s):  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pasquale Arpaia ◽  
Federica Crauso ◽  
Mirco Frosolone ◽  
Massimo Mariconda ◽  
Simone Minucci ◽  
...  

AbstractA personalized model of the human knee for enhancing the inter-individual reproducibility of a measurement method for monitoring Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) after transdermal delivery is proposed. The model is based on the solution of Maxwell Equations in the electric-quasi-stationary limit via Finite Element Analysis. The dimensions of the custom geometry are estimated on the basis of knee circumference at the patella, body mass index, and sex of each individual. An optimization algorithm allows to find out the electrical parameters of each subject by experimental impedance spectroscopy data. Muscular tissues were characterized anisotropically, by extracting Cole–Cole equation parameters from experimental data acquired with twofold excitation, both transversal and parallel to tissue fibers. A sensitivity and optimization analysis aiming at reducing computational burden in model customization achieved a worst-case reconstruction error lower than 5%. The personalized knee model and the optimization algorithm were validated in vivo by an experimental campaign on thirty volunteers, 67% healthy and 33% affected by knee osteoarthritis (Kellgren–Lawrence grade ranging in [1,4]), with an average error of 3%.


1952 ◽  
Vol 30 (5) ◽  
pp. 367-377 ◽  
Author(s):  
John Hunter ◽  
E. H. Kerr ◽  
M. G. Whillans

Previous laboratory tests have shown that joint temperatures, on exposure to low ambient temperatures, fall to a greater extent than muscle, rectal, or average skin temperatures. The fall in temperature is accompanied by an increased resistance of joints to movement, and the maximum speed with which the joint can be moved decreases. The predominant type of movement at the human knee joint and interphalangeal joints is a gliding one. The characteristics of synovial fluid explain the increased forces required to move a joint and the loss in speed of movement on exposure to cold. In vivo studies support such predictions.


2018 ◽  
Vol 28 (8) ◽  
pp. 3384-3392 ◽  
Author(s):  
Alexander Kolb ◽  
Simon Robinson ◽  
David Stelzeneder ◽  
Markus Schreiner ◽  
Catharina Chiari ◽  
...  

2006 ◽  
Vol 100 (4) ◽  
pp. 1428-1430 ◽  
Author(s):  
Graham Kemp

Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using 31P-magnetic resonance spectroscopy in 16 men and women (36.9 ± 4.6 yr). The initial PCr resynthesis rate and time constant (Tc) were used as indicators of mitochondrial respiration after brief (10–12 s) and exhaustive (1–4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr ( r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP ( r = 0.77, P < 0.001), and no relationship with end-exercise pH ( r = −0.14, P = 0.34). The PCr Tc was not as strongly related to PCr, Cr, PCr/Cr, and ADP ( r < 0.77, P < 0.001–0.18) and was significantly influenced by end-exercise pH ( r = −0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr Tc.


Sign in / Sign up

Export Citation Format

Share Document