Antioxidant role of ascorbic acid on oxidative stress induced by sub-acute exposure of lead and cypermethrin in erythrocytes of Wistar rats

Author(s):  
Ajay Kumar ◽  
Anu Rahal ◽  
Shaikh M. Zoheb ◽  
Atul Prakash ◽  
Rajesh Mandil
2016 ◽  
Vol 6 (1) ◽  
pp. 39 ◽  
Author(s):  
Muneer Ahmad Dar ◽  
Rajinder Raina ◽  
Arshad Hussain Mir ◽  
Pawan Kumar Verma ◽  
Nrip Kishore Pankaj ◽  
...  

2010 ◽  
Vol 92 (5) ◽  
pp. 947-953 ◽  
Author(s):  
Rajinder Raina ◽  
Pawan K. Verma ◽  
Nrip K. Pankaj ◽  
Vinay Kant ◽  
Shahid Prawez

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Islam M. El-Garawani ◽  
Elsayed A. Khallaf ◽  
Alaa A. Alne-na-ei ◽  
Rehab G. Elgendy ◽  
Gaber A. M. Mersal ◽  
...  

AbstractImidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.


2020 ◽  
Vol 17 ◽  
pp. 100172
Author(s):  
Giridhari Pal ◽  
Tapan Behl ◽  
Vishwajeet Rohil ◽  
Mimansa Khandelwal ◽  
Garima Gupta ◽  
...  

2016 ◽  
Vol 244 ◽  
pp. 187-194 ◽  
Author(s):  
Nachimuthu Maithilikarpagaselvi ◽  
Magadi Gopalakrishna Sridhar ◽  
Rathinam Palamalai Swaminathan ◽  
Bobby Zachariah

2016 ◽  
Vol 94 (10) ◽  
pp. 1074-1082 ◽  
Author(s):  
Dragan Hrncic ◽  
Jelena Mikić ◽  
Aleksandra Rasic-Markovic ◽  
Milica Velimirović ◽  
Tihomir Stojković ◽  
...  

The aim of this study was to examine the effects of a methionine-enriched diet on anxiety-related behavior in rats and to determine the role of the brain oxidative status in these alterations. Adult male Wistar rats were fed from the 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing with standard diet: 7.7 g/kg). Rats were tested in open field and light–dark tests and afterwards oxidative status in the different brain regions were determined. Hyperhomocysteinemia induced by methionine-enriched diet in this study decreased the number of rearings, as well as the time that these animals spent in the center of the open field, but increased index of thigmotaxy. Oxidative status was selectively altered in the examined regions. Lipid peroxidation was significantly increased in the cortex and nc. caudatus of rats developing hyperhomocysteinemia, but unaltered in the hippocampus and thalamus. Based on the results of this research, it could be concluded that hyperhomocysteinemia induced by methionine nutritional overload increased anxiety-related behavior in rats. These proanxiogenic effects could be, at least in part, a consequence of oxidative stress in the rat brain.


Sign in / Sign up

Export Citation Format

Share Document