scholarly journals Application of a Diffusion Charger for the Measurement of Particle Surface Concentration in Different Environments

2007 ◽  
Vol 41 (6) ◽  
pp. 571-580 ◽  
Author(s):  
Leonidas Ntziachristos ◽  
Andrea Polidori ◽  
Harish Phuleria ◽  
Michael D. Geller ◽  
Constantinos Sioutas
e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Teresa Basinska

AbstractProperties of two types of polystyrene microspheres with polyacrolein and polyglycidol components in their surface layers are compared. Microspheres were prepared in batch radical emulsifier-free emulsion copolymerizations of styrene with acrolein and/or α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer ( Mn̅ = 2700). Polymerizations were initiated with potassium peroxodisulfate, and the ratio of initial concentrations of styrene and initiator was constant. Number average diameters of poly(styrene/acrolein) (P(S/A)) and of poly(styrene/polyglycidol) (P(S/PGL)) particles were in the range of 200 - 650 nm and decreased with increasing concentration of acrolein and/or polyglycidol in the polymerizing mixtures. The diameter polydispersity of synthesized particles ( Dw ̅ /Dn̅) was usually lower than 1.02. X-ray photoelectron spectroscopy for P(S/A) and P(S/PGL) microspheres showed that surface layers of particles were significantly enriched in polyacrolein or polyglycidol segments, surface fractions of which increased with increasing concentration of the more hydrophilic comonomer in the polymerizing mixture. In the case of P(S/A) particles, the maximal fraction of polyacrolein approached 80 mol-%, whereas for P(S/PGL) particles the maximal surface fraction of PGL was 42 mol-%. Human serum albumin was used as a model protein for studies of attachment onto P(S/A) and P(S/PGL) microspheres. It has been found that for both kinds of particles, the maximal surface concentration of attached (adsorbed and/or covalently immobilized) protein decreased with increasing fraction of hydrophilic component in the particle surface layer (polyacrolein or polyglycidol units). In the case of P(S/A) particles, adsorption always accompanied covalent immobilization of proteins. To the contrary, covalent immobilization of proteins onto the P(S/PGL) microspheres proceeded without adsorption of proteins.


2020 ◽  
Vol 20 (6) ◽  
pp. 3879-3893 ◽  
Author(s):  
Rongshuang Xu ◽  
Hoi Ki Lam ◽  
Kevin R. Wilson ◽  
James F. Davies ◽  
Mijung Song ◽  
...  

Abstract. The 2-methyltetrols have been widely chosen as chemical tracers for isoprene-derived secondary organic aerosols. While they are often assumed to be relatively unreactive, a laboratory study reported that pure erythritol particles (an analog of 2-methyltetrols) can be heterogeneously oxidized by gas-phase OH radicals at a significant rate. This might question the efficacy of these compounds as tracers in aerosol source-apportionment studies. Additional uncertainty could arise as organic compounds and inorganic salts often coexist in atmospheric particles. To gain more insights into the chemical stability of 2-methyltetrols in atmospheric particles, this study investigates the heterogeneous OH oxidation of pure erythritol particles and particles containing erythritol and ammonium sulfate (AS) at different dry inorganic-to-organic mass ratios (IOR) in an aerosol flow tube reactor at a high relative humidity of 85 %. The same reaction products are formed upon heterogenous OH oxidation of erythritol and erythritol–AS particles, suggesting that the reaction pathways are not strongly affected by the presence and amount of AS. On the other hand, the effective OH uptake coefficient, γeff, is found to decrease by about a factor of ∼20 from 0.45±0.025 to 0.02±0.001 when the relative abundance of AS increases and the IOR increases from 0.0 to 5.0. One likely explanation is the presence of dissolved ions slows down the reaction rates by decreasing the surface concentration of erythritol and reducing the frequency of collision between erythritol and gas-phase OH radicals at the particle surface. Hence, the heterogeneous OH reactivity of erythritol and likely 2-methyltetrols in atmospheric particles would be slower than previously thought when the salts are present. Given 2-methyltetrols often coexist with a significant amount of AS in many environments, where ambient IOR can vary from ∼1.89 to ∼250, our kinetic data would suggest that 2-methyltetrols in atmospheric particles are likely chemically stable against heterogeneous OH oxidation under humid conditions.


2019 ◽  
Author(s):  
Rongshuang Xu ◽  
Hoi Ki Lam ◽  
Kevin R. Wilson ◽  
James F. Davies ◽  
Mijung Song ◽  
...  

Abstract. 2-methyltetrols have been widely chosen as chemical tracers for isoprene-derived secondary organic aerosols. While they are often assumed to be relatively unreactive, a laboratory study reported that pure erythritol particles (an analog of 2-methyltetrols) can be heterogeneously oxidized by gas-phase OH radicals at a significant rate. This might question the efficacy of these compounds as tracers in aerosol source apportionment studies. Additional uncertainty could raise since organic compounds and inorganic salts are often coexisted in atmospheric particles. To gain more insights into the chemical stability of 2-methyltetrols in atmospheric particles, this study investigates the heterogeneous OH oxidation of pure erythritol particles and particles containing erythritol and ammonium sulfate (AS) at different dry inorganic-to-organic mass ratios (IOR) in an aerosol flow tube reactor at a high relative humidity of 85 %. The same reaction products are formed upon heterogenous OH oxidation of erythritol and erythritol-AS particles, suggesting that the reaction pathways are not strongly affected by the presence and amount of AS. On the other hand, the effective OH uptake coefficient, γeff, is found to decrease by about a factor of ~ 20 from 0.45 ± 0.025 to 0.02 ± 0.001 when the relative abundance of AS increases and the IOR increases from 0.0 to 5.0. One likely explanation is the presence of dissolved ions slows down the reaction rates by decreasing the surface concentration of erythritol and reducing the frequency of collision between erythritol and gas-phase OH radicals at the particle surface. Hence, the heterogeneous OH reactivity of erythritol and likely 2-methyltetrols in atmospheric particles would be slower than previously thought when the salts are present. Given 2-methyltetrols often coexist with a significant amount of AS in many environments, where ambient IOR can vary from ~ 1.89 to ~ 250, our kinetic data would suggest that 2-methyltetrols in atmospheric particles are likely chemically stable against heterogeneous OH oxidation under humid conditions.


Author(s):  
G. McMahon ◽  
T. Malis

As with all techniques which are relatively new and therefore underutilized, diamond knife sectioning in the physical sciences continues to see both developments of the technique and novel applications.Technique Developments Development of specific orientation/embedding procedures for small pieces of awkward shape is exemplified by the work of Bradley et al on large, rather fragile particles of nuclear waste glass. At the same time, the frequent problem of pullout with large particles can be reduced by roughening of the particle surface, and a proven methodology using a commercial coupling agent developed for glasses has been utilized with good results on large zeolite catalysts. The same principle (using acid etches) should work for ceramic fibres or metal wires which may only partially pull out but result in unacceptably thick sections. Researchers from the life sciences continue to develop aspects of embedding media which may be applicable to certain cases in the physical sciences.


Author(s):  
Adriana Verschoor ◽  
Ronald Milligan ◽  
Suman Srivastava ◽  
Joachim Frank

We have studied the eukaryotic ribosome from two vertebrate species (rabbit reticulocyte and chick embryo ribosomes) in several different electron microscopic preparations (Fig. 1a-d), and we have applied image processing methods to two of the types of images. Reticulocyte ribosomes were examined in both negative stain (0.5% uranyl acetate, in a double-carbon preparation) and frozen hydrated preparation as single-particle specimens. In addition, chick embryo ribosomes in tetrameric and crystalline assemblies in frozen hydrated preparation have been examined. 2D averaging, multivariate statistical analysis, and classification methods have been applied to the negatively stained single-particle micrographs and the frozen hydrated tetramer micrographs to obtain statistically well defined projection images of the ribosome (Fig. 2a,c). 3D reconstruction methods, the random conical reconstruction scheme and weighted back projection, were applied to the negative-stain data, and several closely related reconstructions were obtained. The principal 3D reconstruction (Fig. 2b), which has a resolution of 3.7 nm according to the differential phase residual criterion, can be compared to the images of individual ribosomes in a 2D tetramer average (Fig. 2c) at a similar resolution, and a good agreement of the general morphology and of many of the characteristic features is seen.Both data sets show the ribosome in roughly the same ’view’ or orientation, with respect to the adsorptive surface in the electron microscopic preparation, as judged by the agreement in both the projected form and the distribution of characteristic density features. The negative-stain reconstruction reveals details of the ribosome morphology; the 2D frozen-hydrated average provides projection information on the native mass-density distribution within the structure. The 40S subunit appears to have an elongate core of higher density, while the 60S subunit shows a more complex pattern of dense features, comprising a rather globular core, locally extending close to the particle surface.


2006 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
V. Miska ◽  
J.H.J.M. van der Graaf ◽  
J. de Koning

Nowadays filtration processes are still monitored with conventional analyses like turbidity measurements and, in case of flocculation–filtration, with phosphorus analyses. Turbidity measurements have the disadvantage that breakthrough of small flocs cannot be displayed, because of the blindness regarding changes in the mass distributions. Additional particle volume distributions calculated from particle size distributions (PSDs) would provide a better assessment of filtration performance. Lab-scale experiments have been executed on a flocculation–filtration column fed with effluent from WWTP Beverwijk in The Netherlands. Besides particle counting at various sampling points, the effect of sample dilution on the accuracy of PSD measurements has been reflected. It was found that the dilution has a minor effect on PSD of low turbidity samples such as process filtrate. The correlation between total particle counts, total particle volume (TPV) and total particle surface is not high but is at least better for diluted measurements of particles in the range 2–10 μm. Furthermore, possible relations between floc-bound phosphorus and TPV removal had been investigated. A good correlation coefficient is found for TPV removal versus floc-bound phosphorus removal for the experiments with polyaluminiumchloride and the experiments with single denitrifying and blank filtration.


1984 ◽  
Vol 49 (10) ◽  
pp. 2222-2230 ◽  
Author(s):  
Viliam Múčka ◽  
Rostislav Silber

The catalytic and physico-chemical properties of low-temperature nickel-silver catalysts with nickel oxide concentrations up to 43.8% (m/m) are examined via decomposition of hydrogen peroxide in aqueous solution. The mixed catalysts prepared at 250°C are composed of partly decomposed silver carbonate or oxide and nickel carbonate or hydroxide decomposed to a low degree only and exhibiting a very defective crystal structure. The activity of these catalysts is determined by the surface concentration of silver ions, which is affected by the nickel component present. The latter also contributes to the thermal stability of the catalytic centres of the silver component, viz. the Ag+ ions. The concentration of these ions varies with the temperature of the catalyst treatment, the activity varies qualitatively in the same manner, and the system approaches the Ag-NiO composition. The catalytic centres are very susceptible to poisoning by chloride ions. A previous exposition of the catalyst to a gamma dose of 10 kGy from a 60Co source has no measurable effect on the physico-chemical properties of the system.


Author(s):  
Eaton E. Lattman ◽  
Thomas D. Grant ◽  
Edward H. Snell

In this chapter we note that solution scattering data can be divided into four regions. At zero scattering angle, the scattering provides information on molecular weight of the particle in solution. Beyond that, the scattering is influenced by the radius of gyration. As the scattering angle increases, the scattering is influenced by the particle shape, and finally by the interface with the particle and the solution. There are a number of important invariants that can be calculated directly from the data including molecular mass, radius of gyration, Porod invariant, particle volume, maximum particle dimension, particle surface area, correlation length, and volume of correlation. The meaning of these is described in turn along with their mathematical derivations.


Sign in / Sign up

Export Citation Format

Share Document