Effects of the sampling spacing on the spatial variability in soil organic carbon, total nitrogen, and total phosphorus across a semiarid watershed

Author(s):  
Pingping Zhang ◽  
Yunqiang Wang ◽  
Xingchang Zhang
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9699
Author(s):  
Qinghe Zhao ◽  
Shengyan Ding ◽  
Qian Liu ◽  
Shuoqian Wang ◽  
Yaru Jing ◽  
...  

Riparian soils and vegetation are important factors influencing the biodiversity and biogeochemical processes of river ecosystems. Riparian soils and vegetation form the foundation for multiple ecosystem services provided by river ecosystems. However, it remains poorly understood how riparian soils and vegetation interact with one another to maintain these services. In this study, we sampled four common types of riparian vegetation associated with the Beijiang River in South China. These included forestland, bamboo forest, mixed forest, and grassland ecosystems. Specifically, we analyzed the spatial distribution of riparian soils and their response to environmental factors (i.e., coverage and height of trees, shrubs and grass, distance to river, and altitude). Our results indicate that soil properties in riparian zones were affected significantly by vegetation type. In particular, clay content, soil organic carbon, and nitrate nitrogen content were significantly correlated with vegetation type. In contrast, changes in soil total nitrogen, total phosphorus, and available phosphorus content were not associated with vegetation type. Moreover, soil physical and chemical properties interacted with one an other, as well as with vegetation characteristics. This was indicated by the significant correlation observed between soil organic carbon, total nitrogen, total phosphorus, and soil texture, with structural characteristics of the four vegetation types. We also found that height and cover of trees and shrubs were significantly correlated with soil chemical properties. However, the effects of topographic variables such as altitude and distance to river were not significant. Results from this study can thus provide a basis for the ecological restoration and land management of degraded iparian zones.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Hongwei Xu ◽  
Qing Qu ◽  
Peng Li ◽  
Ziqi Guo ◽  
Entemake Wulan ◽  
...  

The Loess Plateau is an important region for vegetation restoration in China; however, changes in soil organic carbon (SOC), soil nutrients, and stoichiometry after restoration in this vulnerable ecoregion are not well understood. Typical restoration types, including orchardland, grassland, shrubland, and forestland, were chosen to examine changes in the stocks and stoichiometry of SOC, soil total nitrogen (TN), and soil total phosphorus (TP) at different soil depths and recovery times. Results showed that SOC stocks first increased and then stabilized in orchardland, grassland, and shrubland at 0–30 cm depths, while in forestland, SOC stocks gradually increased. Soil TN stocks first increased and then decreased in orchardland, shrubland, and forestland with restoration age at 0–30 cm depths, while soil TP stocks showed little variation between restoration types; at the same time, the overall C:N, C:P, and N:P ratios increased with restoration age. In the later stages of restoration, the stocks of SOC and soil TN at 0–30 cm soil depths were still lower than those in natural grassland and natural forest. Additionally, the SOC, soil TN, and soil TP stocks and the C:N, C:P, and N:P ratios decreased with soil depth. The forestland had the highest rate of change in SOC and soil TN stocks, at 0–10 cm soil depth. These results indicate a complex response of SOC, soil TN, and soil TP stocks and stoichiometry to vegetation restoration, which could have important implications for understanding C, N, and P changes and nutrient limitations after vegetation restoration.


Author(s):  
Hongwei Xu ◽  
Qing Qu ◽  
Peng Li ◽  
Ziqi Guo ◽  
Entemake Wulan ◽  
...  

The Loess Plateau is an important region for vegetation restoration in China, however, changes in soil organic carbon (SOC), soil nutrients, and stoichiometry after restoration in this vulnerable ecoregion are not well understood. Typical restoration types, including orchardland (OL), grassland (GL), shrubland (SL), and forestland (FL) were chosen to examine changes in the stocks and stoichiometry of SOC, soil total nitrogen (TN), and soil total phosphorus (TP) at different soil depths and recovery times. Results showed that SOC stocks first increased and then stabilized in OL, GL, and SL at 0–30 cm depth, while in FL, stocks gradually increased. Soil TN stocks first increased and then decreased in OL, SL, and FL with vegetation age at 0–30 cm depth, while soil TP stocks showed little variation between restoration types. In the later stages of restoration, the stocks of SOC and soil TN at 0–30 cm soil depth were still lower than those in natural grassland (NG) and natural forest (NF). The overall C:N, C:P, and N:P ratios increased with vegetation age. Additionally, the SOC, soil TN and soil TP stocks, and C:N, C:P, and N:P ratios decreased with soil depth. The FL had the highest rate of change in SOC and soil TN stocks, at 0-10 cm soil depth. These results indicate a complex response of SOC, soil TN, and soil TP stocks and stoichiometry to vegetation restoration, which could have important implications for understanding C, N, and P changes and nutrient limitations after vegetation restoration.


Author(s):  
Bing Yu ◽  
Patteson Chula Mwagona ◽  
Yuncong Li ◽  
Xiaoyu Li ◽  
Hongjun Wang ◽  
...  

This study investigated the spatial variability of soil organic carbon (SOC), total nitrogen (TN), soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) in Hongqipao reservoir dominated by different vegetation types and the possible relationships with other soil properties. Top 0–50cm soil samples were collected in sites dominated by different vegetation types within the reservoir littoral zone. There was high spatial variability for SOC, TN, SMBC and SMBN in the Hongqipao reservoir. In addition, the SOC, TN, SMBC and SMBN contents decreased with increasing soil depth. This could be attributed by the fact that when plants detritus decompose, most of their organic matter is mineralized and a new soil layer which contains a greater amount of organic carbon is formed at the top. According to Pearson's correlation values and redundancy analysis (RDA) results, SOC was significantly and positively correlated with TN likely because the vegetation organic matter and liter could be the main nitrogen sources. Similarly, soil moisture content (MC) was significant positive correlated with SOC and TN. Conversely, BD was significant negative correlated with SOC and TN contents in the 0-50 cm soil profiles. However, no significant correlations were observed between SOC, TN, SMBC and SMBN contents and soil pH values. SMBN was significantly and positive correlated with C:N ratio and BD and negative related with MC. Multiple linear regression model revealed that all measures soil properties in this study could explain higher significant variability of the response variables (SOC, TN, SMBC and SMBN contents). This implies that all the measured soil variables within the different vegetation types in the reservoir played a crucial role in determining the contents of SOC, TN, SMBC and SMBN. This study further suggests that vegetation types play a major role in determining the spatial characteristics of SOC and TN. Any changes in the vegetation types in the reservoir may influence the distribution of SOC and TN. This may affect the global carbon budget and the atmospheric greenhouse gas concentration significantly.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244322
Author(s):  
Jing Zhang ◽  
Miao Zhang ◽  
Shaoyan Huang ◽  
Xuan Zha

The hilly red soil region of southern China suffers from severe soil erosion that has led to soil degradation and loss of soil nutrients. Estimating the content and spatial variability of soil organic carbon (SOC) and soil total nitrogen (STN) and assessing the influence of topography and land-use type on SOC and STN after years of soil erosion control are important for vegetation restoration and ecological reconstruction. A total of 375 topsoil samples were collected from Changting County, and their SOC and STN distributions were studied by using descriptive statistics and geostatistical methods. Elevation, slope, aspect and land-use type were selected to investigate the impacts of natural and human factors on the spatial heterogeneity of SOC and STN. The mean SOC and STN concentrations were 15.85 and 0.98 g kg-1 with moderate spatial variations, respectively. SOC and STN exhibited relatively uniform distributions that decreased gradually from the outside parts to the center of the study area. The SOC and STN contents in the study area were still at moderate and low levels after years of erosion control, which suggests that soil nutrient improvement is a slow process. The lowest SOC and STN values were at lower elevations in the center of Changting County. The results indicated that the SOC and STN contents increased most significantly with elevation and slope due to the influence of topography on the regional natural environment and soil erosion in the eroded hilly region. No significant variations were observed among different slope directions and land-use types.


2021 ◽  
pp. 1-19
Author(s):  
Yingcong Ye ◽  
Yefeng Jiang ◽  
Lihua Kuang ◽  
Yi Han ◽  
Zhe Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document