Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon

2017 ◽  
Vol 126 (3) ◽  
pp. 129-145 ◽  
Author(s):  
N. N. Chombong ◽  
C. E. Suh ◽  
B. Lehmann ◽  
A. Vishiti ◽  
D. C. Ilouga ◽  
...  
2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


2013 ◽  
Vol 652-654 ◽  
pp. 2538-2542 ◽  
Author(s):  
Xiao Hui Fan ◽  
Ying Li ◽  
Xu Ling Chen

The main effect on iron ore mineralization performance in the sintering process is the grain size of raw material and chemical composition. The results show that -0.5mm particles can mineralize, but +0.5mm particles remain a nucleus in sinter. This paper analyses the effect of the chemical composition on mineralization characteristics of liquid production. The relationship model is established by using regression analysis between the chemical composition and liquid formation characteristics. The mian factors of mineralization in the chemical composition: SiO2, CaO, MgO and Al2O3.


2021 ◽  
Vol 7 ◽  
pp. 66-77
Author(s):  
Yu.V. Erokhin ◽  
A.V. Zakharov ◽  
L.V. Leonova

The mineralogy of slags of the Shuvakish ironworks plant is studied. The plant had been operated during the reign of Peter the Great from 1704 to 1716 years and was located within the present-day northwestern outskirts of Yekaterinburg. The slags are composed of fayalite aggregate with a signifcant content of hercynite and wustite and contain spherules of iron, glass, leucite and ferromerrillite. The chemical composition of rock-forming and ore minerals is determined on a JSM-6390LV (Jeol) SEM equipped with an INCA Energy 450 X-Max 80 EDS (Oxford Instruments) (Institute of Geology and Geochemistry UB RAS, Yekaterinburg). The slags formed as a result of bloomery iron production. Their formation temperature is estimated in a range of 1177 °С on the basis of eutectic crystallization of wustite and fayalite. The Shuvakish plant was supplied with marsh iron ore, which was most likely extracted in the nearest Moleben swamp located to the north from the plant.


2021 ◽  
Vol 30 (3) ◽  
pp. 470-479
Author(s):  
V. K. Khilchevskyi ◽  
N. P. Sherstiuk

The article presents the generalized results of chemical composition research of waters from Inhulets and Saksahan rivers on the territory adjacent to the Northern and Inhulets with pumping of underground waters (mine and quarry), which have an abnormal chemical composition, high mineralization and contain high concentrations of microcomponents. The following scheme of mine water utilization is used in the Kryvyi Rih iron ore basin: the mines of the northern part of Kryvbas discharge water into the tailings dam of Northern Iron Ore Dressing works (Northern GZK); mines of the southern part discharge mine waters into the storage pond of the Svistunov creek during the year, and in the winter its waters are discharged into the Inhulets River with subsequent washing of the river in the spring-summer period. Such treatment of mine and quarry waters has led to the formation of a hydrochemical anomaly on the territory of Northern GZK with the center in the tailings. The mineralization of water in the pond reaches 23 g / l (2020). There is a high content of microcomponents: lead, cadmium, vanadium, manganese, boron, bromine, nickel, mercury, thiocyanates. As a result, the mineralization of the Saksahan River water increases over time (up to 5.4 g / l), the content of microcomponents also increases and becomes quite high. Prolonged use of the Inhulets River for utilization of mine water from the Svistunov creek storage pond has led to a change in the type of water: instead of type II (river water), Inhulets water belongs to the type III (metamorphosed waters). There are no regularities in the change of chemical composition of water (hydrochemical regime) in Inhulets, which is a consequence of the introduction of the scheme "discharge – flushing" for the disposal of mine water. Among the microcomponents in the water of Inhulets there is an increased content of vanadium, boron and bromine (7–8 times), single excess of lead content. The analysis of equilibria in the carbonate-calcium system of the Inhulets and Saksahan rivers confirmed that the existing hydrochemical regime for the studied rivers is stationary, thus, the environmental measures implemented will not have rapid consequences.


Author(s):  
Sajad Ali ◽  
Fahad Nawaz ◽  
Yaseen Iqbal

To know about the nature of gangue associated with the ores, characterization has become an integral part in mineral processing and beneficiation, therefore, the as-mined iron ore collected from Karak region of KP has been characterized for its phase, microstructure and chemical composition via XRD, SEM and EDS respectively. Beneficiation of the iron ore has been carried out by shaking table and magnetic separator. XRD analysis confirmed the presence of iron oxide (Fe203) as the major phase along with quartz (Si02) as the minor phase. Finely grinded iron ore powder of 100 (149 µm) and 200 (74 µm) mesh sizes were passed via shaking table and magnetic separator subsequently. The iron ore was successfully upgraded from 28.27 wt.% to 36.51 wt.% at 100 mesh and 38.70 wt.% at 200 mesh via shaking table, thus achieving a maximum of 10% upgraded iron ore. The magnetic separator did not become so effective due to non- magnetic nature of hematite.    


ICAME 2003 ◽  
2004 ◽  
pp. 395-402
Author(s):  
M. Fajardo ◽  
G. A. Pérez Alcázar ◽  
A. M. Moreira ◽  
N. L. Speziali
Keyword(s):  
Iron Ore ◽  

Author(s):  
T. A. Gvozdenko ◽  
I. A. Baksheev ◽  
E. I. Gerasimova ◽  
D. A. Khanin ◽  
M. V. Chervyakovskya ◽  
...  

Mica samples from granitic pegmatites of Mokrusha and Ministerskaya mines, Murzinka pluton, Central Urals are polylithionite, sokolovaite, trilithionite, Li-bearing muscovite, and annite–phlogopite series. Chromium and magnesium, uncommon elements for light mica are detected in samples from both mines, indicates host-rock contamination of pegmatites. The low values K/Rb ratio and Ta/Nb ratio define a very high degree of pegmatite differentiation of both mines.


Sign in / Sign up

Export Citation Format

Share Document