Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles

2019 ◽  
Vol 37 (18) ◽  
pp. 4852-4862 ◽  
Author(s):  
Azam Mortazavifar ◽  
Heidar Raissi ◽  
Mahnaz Shahabi
2015 ◽  
Vol 6 (8) ◽  
pp. 1286-1299 ◽  
Author(s):  
D. D. Lane ◽  
D. Y. Chiu ◽  
F. Y. Su ◽  
S. Srinivasan ◽  
H. B. Kern ◽  
...  

Second generation polymeric brushes with molecular weights in excess of 106 Da were synthesize via RAFT polymerization for use as antibody targeted drug delivery vehicles.


RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92547-92559 ◽  
Author(s):  
Pabitra Narayan Samanta ◽  
Kalyan Kumar Das

A quantum chemical study has been made on the interaction of 5-aminolevulinic acid (ALA) drug molecule with boron-nitride and carbon nanotubes so as to use these nanomaterials as drug-delivery vehicles.


2020 ◽  
Vol 11 ◽  
Author(s):  
Gina D. Kusuma ◽  
Jessica E. Frith ◽  
Christopher G. Sobey ◽  
Rebecca Lim

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaojiao Yu ◽  
Ian Trase ◽  
Muqing Ren ◽  
Kayla Duval ◽  
Xing Guo ◽  
...  

Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this paper, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting, and physical targeting) and compare methods of action, advantages, limitations, and the current stages of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery.


2016 ◽  
Vol 1 (01) ◽  
Author(s):  
Prachi Goyal ◽  
Kamani Parmar ◽  
Sonika Gupta ◽  
Mukesh Sharma ◽  
M. P. Dobhal ◽  
...  

Bimolecular-conjugated nanoparticles (NP) demonstrate unique properties with wide-ranging applications in the diagnosis of infectious diseases as well as application in gene therapy and drug delivery therapies. The unique properties and utility of NP arise from a variety of attributes, including the similar size of nanoparticles and biomolecules. Biological functions depend primarily on units that have nanoscale dimensions, such as viruses, ribosomes, molecular motors and components of the extra cellular matrix. In addition, engineered devices at the nanoscale are small enough to interact directly with sub-cellular compartments and to probe intracellular events. This review focuses on the methods of nanoparticle interaction with different biomolecules such as antibodies, DNA, lipids, and proteins. More specifically, there is discussion about bioconjugation linkage and a summary of potential biomedical applications of bio-conjugated nanoparticles as targeted drug delivery vehicles.


EBioMedicine ◽  
2019 ◽  
Vol 43 ◽  
pp. 424-434 ◽  
Author(s):  
Ekaterina Eremenko ◽  
Kritika Mittal ◽  
Omer Berner ◽  
Nikita Kamenetsky ◽  
Anna Nemirovsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document