5-Aminolevulinic acid functionalized boron-nitride and carbon nanotubes as drug delivery vehicles for skin anticancer drugs: a theoretical study

RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92547-92559 ◽  
Author(s):  
Pabitra Narayan Samanta ◽  
Kalyan Kumar Das

A quantum chemical study has been made on the interaction of 5-aminolevulinic acid (ALA) drug molecule with boron-nitride and carbon nanotubes so as to use these nanomaterials as drug-delivery vehicles.

2014 ◽  
Vol 222 ◽  
pp. 145-158 ◽  
Author(s):  
Shweta Arora ◽  
Vanish Kumar ◽  
Shriniwas Yadav ◽  
Sukhbir Singh ◽  
Deepika Bhatnagar ◽  
...  

Various biomedical applications of nanomaterials have been proposed in the last few years leading to the emergence of a new field in diagnostics and therapeutics. Most of these applications involve the administration of nanoparticles into patients. Carbon Nanotubes are enjoying increasing popularity as building blocks for novel drug delivery systems as well as for bioimaging and biosensing. The recent strategies to functionalize carbon nanotubes have resulted in the generation of biocompatible and water-soluble carbon nanotubes that are well suited for high treatment efficacy and minimum side effects for future cancer therapies with low drug doses. The toxicological profile of such carbon nanotube systems developed as nanomedicines will have to be determined prior to any clinical studies undertaken.


Biomaterials ◽  
2012 ◽  
Vol 33 (6) ◽  
pp. 1689-1698 ◽  
Author(s):  
Lingjie Meng ◽  
Xiaoke Zhang ◽  
Qinghua Lu ◽  
Zhaofu Fei ◽  
Paul J. Dyson

2018 ◽  
Vol 18 (5) ◽  
pp. 439-457 ◽  
Author(s):  
Merina Mariyam ◽  
Kajal Ghosal ◽  
Sabu Thomas ◽  
Nandakumar Kalarikkal ◽  
Mahima S. Latha

2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 427
Author(s):  
Amin Mirzaaghasi ◽  
Yunho Han ◽  
So-Hee Ahn ◽  
Chulhee Choi ◽  
Ji-Ho Park

Exosomes have attracted considerable attention as drug delivery vehicles because their biological properties can be utilized for selective delivery of therapeutic cargoes to disease sites. In this context, analysis of the in vivo behaviors of exosomes in a diseased state is required to maximize their therapeutic potential as drug delivery vehicles. In this study, we investigated biodistribution and pharmacokinetics of HEK293T cell-derived exosomes and PEGylated liposomes, their synthetic counterparts, into healthy and sepsis mice. We found that biodistribution and pharmacokinetics of exosomes were significantly affected by pathophysiological conditions of sepsis compared to those of liposomes. In the sepsis mice, a substantial number of exosomes were found in the lung after intravenous injection, and their prolonged blood residence was observed due to the liver dysfunction. However, liposomes did not show such sepsis-specific effects significantly. These results demonstrate that exosome-based therapeutics can be developed to manage sepsis and septic shock by virtue of their sepsis-specific in vivo behaviors.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3589
Author(s):  
Rui Liu ◽  
Alessandro Poma

Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.


Sign in / Sign up

Export Citation Format

Share Document