Correlation between thyroidal and peripheral blood total T cells, CD8+ T cells, and CD8+ T- regulatory cells and T-cell reactivity to calsequestrin and collagen XIII in patients with Graves’ ophthalmopathy

2018 ◽  
Vol 43 (4) ◽  
pp. 264-274
Author(s):  
Farah Al-Ansari ◽  
Hooshang Lahooti ◽  
Leanne Stokes ◽  
Senarath Edirimanne ◽  
Jack Wall
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1307-1307
Author(s):  
Robert B. Levy ◽  
Angela Jones

Abstract CD4 regulatory T (Treg) cells have shown promise in the transplantation mileu including the ability to inhibit the development of graft vs host disease (GVHD) following allogeneic hematopoietic stem cell transplants (HCT). The antigen specificity of the Treg population(s) involved is not yet clear nor is the role of their activation following transplant. We are interested in determining the requirement for recognition of host MHC antigens following infusion of CD4+CD25+ T cells in an experimental model of GVHD. To clearly distinguish the requirements of regulatory vs GVH reactive cells, a model of CD8 T cell mediated GVHD was developed using highly purified BALB/c (H2d) donor CD8+ T cells (Miltenyi column, 95-98%). CD8 T cells were transplanted together with T cell depleted (TCD) BALB/c BMC into 12.0 GY (6.0 Gy split dose) TBI conditioned C57BL/6 (B6, H2b) recipients. To support development of GVHD by these cells, resistance was inhibited by treatment of recipients with anti-NK1.1mab (PK136) at Days -1, 0 and +7. BALB/c CD8+ T cells at doses of 5.0x106 but not 2.5x106 induced weight loss and some lethality in B6 recipients. 5x106 CD8+ T cells were then transplanted into B6-MHC class II−/ − recipients. GVHD symptoms including weight loss and lethality were readily apparent in these mice post-transplant. Interestingly, GVHD was consistently more severe with respect to the induction of weight loss and lethality in MHC Class II−/ − vs B6-wt recipients. Highly enriched BALB/c CD4+CD25+ T cells (> 95%) were produced from spleen and lymph node cells following negative (B-cells, CD8 and NK) and positive (CD25) selection using Miltenyi magnetic bead columns. Co-transplant of 1x106 CD4+CD25+ T cells together with BALB/c CD8+ T cells into B6 recipients inhibited GVHD as assessed by the absence of weight loss and lethality compared to B6 recipients of CD8+ T cells alone. In contrast, BALB/c CD4+CD25+ T cells failed to protect B6-MHC class II−/ − recipients from severe CD8+ T cell mediated GVHD. These findings demonstrate that donor CD4+ T regulatory cells can suppress GVHD inducing CD8+ T cells after the former recognize host class II alloantigen following transplant. We hypothesize that activated CD4+CD25+ T regulatory cells inhibit GVH reactive T cells at the host APC interface. Future studies in this model can be designed to examine ex-vivo activated and expanded CD4+CD25+ T regulatory populations. Transplant of such cells will enable us to address questions regarding the importance of in vivo recognition of host class II in the regulation of GVHD by these cells.


2005 ◽  
Vol 202 (7) ◽  
pp. 907-912 ◽  
Author(s):  
Luca Gattinoni ◽  
Steven E. Finkelstein ◽  
Christopher A. Klebanoff ◽  
Paul A. Antony ◽  
Douglas C. Palmer ◽  
...  

Depletion of immune elements before adoptive cell transfer (ACT) can dramatically improve the antitumor efficacy of transferred CD8+ T cells, but the specific mechanisms that contribute to this enhanced immunity remain poorly defined. Elimination of CD4+CD25+ regulatory T (T reg) cells has been proposed as a key mechanism by which lymphodepletion augments ACT-based immunotherapy. We found that even in the genetic absence of T reg cells, a nonmyeloablative regimen substantially augmented CD8+ T cell reactivity to self-tissue and tumor. Surprisingly, enhanced antitumor efficacy and autoimmunity was caused by increased function rather than increased numbers of tumor-reactive T cells, as would be expected by homeostatic mechanisms. The γC cytokines IL-7 and IL-15 were required for augmenting T cell functionality and antitumor activity. Removal of γC cytokine–responsive endogenous cells using antibody or genetic means resulted in the enhanced antitumor responses similar to those seen after nonmyeloablative conditioning. These data indicate that lymphodepletion removes endogenous cellular elements that act as sinks for cytokines that are capable of augmenting the activity of self/tumor-reactive CD8+ T cells. Thus, the restricted availability of homeostatic cytokines can be a contributing factor to peripheral tolerance, as well as a limiting resource for the effectiveness of tumor-specific T cells.


2001 ◽  
Vol 69 (9) ◽  
pp. 5345-5351 ◽  
Author(s):  
Luiza Guilherme ◽  
Sandra E. Oshiro ◽  
Kellen C. Faé ◽  
Edécio Cunha-Neto ◽  
Guilherme Renesto ◽  
...  

ABSTRACT T-cell molecular mimicry between streptococcal and heart proteins has been proposed as the triggering factor leading to autoimmunity in rheumatic heart disease (RHD). We searched for immunodominant T-cell M5 epitopes among RHD patients with defined clinical outcomes and compared the T-cell reactivities of peripheral blood and intralesional T cells from patients with severe RHD. The role of HLA class II molecules in the presentation of M5 peptides was also evaluated. We studied the T-cell reactivity against M5 peptides and heart proteins on peripheral blood mononuclear cells (PBMC) from 74 RHD patients grouped according to the severity of disease, along with intralesional and peripheral T-cell clones from RHD patients. Peptides encompassing residues 1 to 25, 81 to 103, 125 to 139, and 163 to 177 were more frequently recognized by PBMC from RHD patients than by those from controls. The M5 peptide encompassing residues 81 to 96 [M5(81–96) peptide] was most frequently recognized by PBMC from HLA-DR7+DR53+ patients with severe RHD, and 46.9% (15 of 32) and 43% (3 of 7) of heart-infiltrating and PBMC-derived peptide-reactive T-cell clones, respectively, recognized the M5(81–103) region. Heart proteins were recognized more frequently by PBMC from patients with severe RHD than by those from patients with mild RHD. The similar pattern of T-cell reactivity found with both peripheral blood and heart-infiltrating T cells is consistent with the migration of M-protein-sensitized T cells to the heart tissue. Conversely, the presence of heart-reactive T cells in the PBMC of patients with severe RHD also suggests a spillover of sensitized T cells from the heart lesion.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2535-2535
Author(s):  
Katayoun Rezvani ◽  
Abdul Tawab ◽  
Yasemin Kilical ◽  
Giuseppe Sconocchia ◽  
Jonming Li ◽  
...  

Abstract The tumor antigen PRAME (preferentially expressed antigen of melanoma) is expressed in up to 50% of patients with AML. Four HLA-A*0201-restricted epitopes in the PRAME protein have been identified: P100-108 (P100), P142-151 (P142), P300-309 (P300) and P425-433 (P425). To detect very low frequencies of PRAME-specific CD8+ T cells, we used quantitative real-time reverse transcription polymerase chain reaction (qPCR) to measure interferon-g mRNA (IFN-g) production by PRAME peptide pulsed CD8+ T cells from 11 healthy donors and 10 HLA-A*0201+ patients with AML, one of whom had received an allogeneic stem cell transplant (SCT). After isolation, 1 x106 CD8+ T cells were stimulated in vitro with C1R-A2 cells (an MHC class I-defective LCL expressing HLA-A*0201) loaded with test peptides at concentrations of 0.1, 1 and 10 mM, to determine functional avidity. CD8+ T cells were also stimulated with CMV pp65 (positive control) and gp100 (209-2M) (negative control) peptides. After 3h coculture, cells were harvested for RNA extraction and cDNA synthesis. qPCR was performed for IFN-g mRNA and normalized to copies of CD8 mRNA from the same sample. Parallel assays using tetramers demonstrated the IFN-g copy number to be linearly related to the frequency of tetramer-binding T cells, sensitive to frequencies of 1 responding CD8+ T cell/100 000 CD8+ T cells. A positive response was defined as a threshold of 100 or more IFN-g mRNA copies/104 CD8 copies and a stimulation index (SI) of 2 or more, where SI = IFN-g mRNA copies/104 CD8 copies in peptide pulsed cultures/unpulsed cultures. Using this sensitive technique, we found responses in 8/11 HLA-A2-positive healthy donors and 7/10 AML patients. Four of eight healthy donors and 5/7 AML responders recognized 2 or 3 peptide epitopes. The mean response against each of the four epitopes was greater in leukemic patients compared with healthy donors (3597–9371 versus 172–1288 IFN-g mRNA copies/104 CD8 copies). PRAME peptide mediated responses, particularly to P300, were also detected using an optimized ELISPOT assay in 2/4 AML patients and 5/8 normal donors tested. In cross-comparison of 8 qPCR positive donors, 6 also generated IFN-g ELISPOTS confirming IFN-g mRNA transcription was also associated with protein secretion. Of note, the most immunogenic epitope in both donors and patients by both methods was P300. Six qPCR and ELISPOT assays were concordant, but there were 2 ELISPOT negative, qPCR positive patients, and 1 ELISPOT positive qPCR negative patient. In 2/5 samples tested (1 donor and 1 patient), peptide-specific ELISPOT responses expanded from 99 to 1627 and 280 to 758 spots per million plated PBMC respectively, after a single 7 day peptide pulse. Samples from a stem cell donor and the recipient pre and post SCT were also studied. The donor had CD8+ T-cell reactivity to P142, P300 and P425. The patient had no PRAME response prior to SCT but after SCT developed significant responses to P142 and P425 and P100, suggesting the transfer and expansion of PRAME-specific CD8+ T cells from donor to recipient. These results provide the first evidence for spontaneous T-cell reactivity against PRAME in healthy donors and AML patients. They support the immunogenicity of PRAME and its potential application in immunotherapy of leukemia.


2020 ◽  
Vol 8 (2) ◽  
pp. e000848 ◽  
Author(s):  
Joost H van den Berg ◽  
Bianca Heemskerk ◽  
Nienke van Rooij ◽  
Raquel Gomez-Eerland ◽  
Samira Michels ◽  
...  

Treatment of metastatic melanoma with autologous tumor infiltrating lymphocytes (TILs) is currently applied in several centers. Robust and remarkably consistent overall response rates, of around 50% of treated patients, have been observed across hospitals, including a substantial fraction of durable, complete responses.PurposeExecute a phase I/II feasibility study with TIL therapy in metastatic melanoma at the Netherlands Cancer Institute, with the goal to assess feasibility and potential value of a randomized phase III trial.ExperimentalTen patients were treated with TIL therapy. Infusion products and peripheral blood samples were phenotypically characterized and neoantigen reactivity was assessed. Here, we present long-term clinical outcome and translational data on neoantigen reactivity of the T cell products.ResultsFive out of 10 patients, who were all anti-PD-1 naïve at time of treatment, showed an objective clinical response, including two patients with a complete response that are both ongoing for more than 7 years. Immune monitoring demonstrated that neoantigen-specific T cells were detectable in TIL infusion products from three out of three patients analyzed. For six out of the nine neoantigen-specific T cell responses detected in these TIL products, T cell response magnitude increased significantly in the peripheral blood compartment after therapy, and neoantigen-specific T cells were detectable for up to 3 years after TIL infusion.ConclusionThe clinical results from this study confirm the robustness of TIL therapy in metastatic melanoma and the potential role of neoantigen-specific T cell reactivity. In addition, the data from this study supported the rationale to initiate an ongoing multicenter phase III TIL trial.


Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5678-5687 ◽  
Author(s):  
Jae Hun Shin ◽  
Hyung Bae Park ◽  
Yu Mi Oh ◽  
Dong Pyo Lim ◽  
Ji Eun Lee ◽  
...  

Abstract Cytotoxic T lymphocyte–associated antigen 4 (CTLA4) has been known to be a strong tolerance-inducing inhibitory receptor on T-cell surface. Systemic blocking of CTLA4 function with blocking antibodies has been regarded as an attractive strategy to enhance antitumor immunity. However, this strategy accompanies systemic autoimmune side effects that are sometimes problematic. Therefore, we developed a novel CTLA4 mutant that could be expressed in tumor antigen-specific T cells to enhance antitumor effect without systemic autoimmunity. This mutant, named CTLA4-CD28 chimera, consists of extracellular and transmembrane domains of CTLA4, linked with cytoplasmic CD28 domain. Overexpression of CTLA4-CD28 chimera in T cells delivered stimulatory signals rather than inhibitory signals of CTLA4 and significantly enhanced T-cell reactivity. Although this effect was observed in both CD4 and CD8 T cells, the effect on CD4 T cells was predominant. CTLA4-CD28 chimera gene modification of CD4 T cells significantly enhanced antitumor effect of unmodified CD8 T cells. Nonetheless, the gene modification of CD8 T cells along with CD4 T cells further maximized antitumor effect of T cells in 2 different murine tumor models. Thus, CTLA4-CD28 chimera gene modification of both tumor antigen-specific CD4 and CD8 T cells would be an ideal way of modulating CTLA4 function to enhance tumor-specific T-cell reactivity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3113-3113
Author(s):  
Frederick E. Chen ◽  
Wensheng Wen ◽  
Guangwu Huang ◽  
Paul Travers ◽  
I. Anthony Dodi ◽  
...  

Abstract Nasopharyngeal Carcinoma (NPC) is associated with latent Epstein Barr Virus (EBV) infection and expression of EBV latent antigen LMP2. Because of the possibility of targeting viral antigens, there is interest in developing EBV-LMP2-specific Cytotoxic T lymphocyte (CTL) immunotherapy for NPC. However, evidence suggests that CD8+ T cell responses to EBV latency II antigens are rarely detectable in these patients. Regulatory T cells have been shown to inhibit stimulation of CD8+ T cells by Antigen Presenting Cells (APC) in vitro, and may play an important role in immune tolerance to tumours. Thirteen newly diagnosed untreated HLA A2 NPC patients were investigated for CTL responses to EBV latency II antigens by flow cytometry using HLA A2 restricted tetramers specific for LMP2a derived peptides (CLG, LTA). No LMP2-specific CD8+ T cells were detected amongst peripheral blood CD8+ T cells either ex vivo or in vitro following short stimulation in ELIspot assays, although strong responses to CMV and flu peptides and PHA were elicited. To investigate the antigen presenting capability of professional APC in NPC, dendritic cells (DC) were generated from ex vivo peripheral blood monocytes and shown to express a stimulatory mature phenotype with expression of CD83 and markers of costimulation CD80 and CD86. Despite this, mature DC pulsed with LMP2 derived peptides failed to stimulate and expand autologous LMP2-specific CTL, suggesting either absence or tolerance of LMP2-specific CTL. CD4+CD25+ regulatory cells have been implicated in peripheral tolerance and inhibition of antigen-specific T cell responses, and analysis of ex vivo peripheral blood T cells from NPC patients showed increased CD25 expression constituting a mean of 22.23 % of total CD4+ T cells compared to normal control mean of 5.35% (student t-test p<0.001). CD25 was not expressed by non-CD4+ T cells including CD8+ and NK cells, indicating that CD25 expression was unlikely to have represented activation. The findings suggest that CD4+CD25+ regulatory cells may play an important role in inhibiting antigen-specific anti-tumour responses in patients with established disease.


2015 ◽  
Vol 22 (3) ◽  
pp. 279-291 ◽  
Author(s):  
Gijsbert P van Nierop ◽  
Josef Mautner ◽  
Johanna G Mitterreiter ◽  
Rogier Q Hintzen ◽  
Georges MGM Verjans

Background: The association between Epstein-Barr virus (EBV) and multiple sclerosis (MS) may involve intrathecal EBV-specific T-cell responses targeting the virus or indirectly, autoantigens. Objective: Compare the prevalence and fine-specificity of EBV-specific T-cells in the cerebrospinal fluid (CSF) of patients with MS ( n = 12), clinically-isolated syndrome (CIS) ( n = 17) and other neurological diseases (OND) ( n = 13). Methods: Intrathecal EBV-specific T-cell reactivity was assayed using CSF-derived T-cell lines (CSF-TCL) and autologous EBV-transformed B-cells (autoBLCL) as antigen-presenting cells (APC). EBV proteins recognized by autoBLCL-specific CD8 T-cells were identified using human leukocyte antigen class I (HLA-I)-negative monkey cells as artificial APC, co-transfected with 59 different EBV genes and the corresponding patient’s HLA-I alleles that were involved in autoBLCL T-cell reactivity. Reactivity towards the MS-associated autoantigen αB-crystallin (CRYAB) was determined analogously. Results: CSF-TCL from CIS and MS patients had significantly higher frequencies of autoBLCL-reactive CD4 T-cells, compared to the OND patients. CIS patients also had significantly higher autoBLCL-reactive CD8 T cells, which correlated with reactive CD4 T-cell frequencies. AutoBLCL-specific CD8 T-cell responses of four CSF-TCL analyzed in detail were oligoclonal and directed to lytic EBV proteins, but not CRYAB endogenously expressed by autoBLCL. Conclusions: Enhanced intrathecal autoBLCL-specific T-cell reactivity, selectively directed towards lytic EBV proteins in two CSF-TCL, suggested a localized T-cell response to EBV in patients with MS. Our data warrant further characterization of the magnitude and breadth of intrathecal EBV-specific T-cell responses in larger patient cohorts.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112242 ◽  
Author(s):  
Ghanashyam Sarikonda ◽  
Georgia Fousteri ◽  
Sowbarnika Sachithanantham ◽  
Jacqueline F. Miller ◽  
Amy Dave ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document