LIGHT REGULATION OF ANTHOCYANIN ACCUMULATION AND CHALCONE SYNTHASE GENE EXPRESSION IN PETUNIA FLOWERS

1999 ◽  
Vol 47 (4) ◽  
pp. 225-229 ◽  
Author(s):  
Anat Katz ◽  
David Weiss

We have previously shown that light is essential for anthocyanin synthesis in detached petunia flowers. In this study, we examined the effect of light quality on anthocyanin accumulation and on the expression of the anthocyanin biosynthetic gene chalcone synthase (chs) in the attached petunia flowers. When plants were kept for 48 h in the dark,chsexpression could not be detected. Blue light and red light promoted the expression of the gene to similar levels, whereas the effect of green light was slightly smaller. Neither UV-A nor UV-B radiation were required for anthocyanin accumulation, or for the induction and maintenance ofchsexpression. The results of this study show that light is essential for anthocyanin synthesis in petunia flowers and that its active spectrum includes most of the visible part but not UV radiation.

Biologia ◽  
2010 ◽  
Vol 65 (4) ◽  
Author(s):  
Bazyli Czeczuga ◽  
Ewa Czeczuga-Semeniuk ◽  
Adrianna Semeniuk

AbstractThe effect of light quality on the photosynthetic pigments as chromatic adaptation in 8 species of lichens were examined. The chlorophylls, carotenoids in 5 species with green algae as phycobionts (Cladonia mitis, Hypogymnia physodes, H. tubulosa var. tubulosa and subtilis, Flavoparmelia caperata, Xanthoria parietina) and the chlorophyll a, carotenoids and phycobiliprotein pigments in 3 species with cyanobacteria as photobionts (Peltigera canina, P. polydactyla, P. rufescens) were determined. The total content of photosynthetic pigments was calculated according to the formule and particular pigments were determined by means CC, TLC, HPLC and IEC chromatography. The total content of the photosynthetic pigments (chlorophylls, carotenoids) in the thalli was highest in red light (genus Peltigera), yellow light (Xanthoria parietina), green light (Cladonia mitis) and at blue light (Flavoparmelia caperata and both species of Hypogymnia). The biggest content of the biliprotein pigments at red and blue lights was observed. The concentration of C-phycocyanin increased at red light, whereas C-phycoerythrin at green light.In Trebouxia phycobiont of Hypogymnia and Nostoc photobiont of Peltigera species the presence of the phytochromes was observed.


1983 ◽  
Vol 61 (12) ◽  
pp. 3279-3282
Author(s):  
Françoise M. Dumortier ◽  
Jan C. Vendrig

A natural inhibitor of anthocyanin synthesis has been found in seeds of mung beans (Vigna radiata). The inhibitor might play an important role in the regulation of anthocyanin accumulation in seedlings. It is mainly localized in the seed coat and in the cotyledons and is excreted in the incubation medium soon after sowing. Removal of the inhibitor by rinsing the seedlings and transferring them to fresh medium results in higher anthocyanin accumulation as compared with seedlings left in the original incubation medium. Addition of the inhibitor 12 h after its removal does not affect anthocyanin accumulation when the seedlings have been grown in complete darkness. On the other hand, anthocyanin accumulation initiated by irradiation with red light is inhibited under these conditions. The inhibitor has been partially purified and some of its chemical characteristics were determined from its behaviour during purification.


Author(s):  
A. D. Boney ◽  
E. D. S. Corner

It was recently suggested (Boney & Corner, i960,1962a) that, contrary to the theory of complementary chromatic adaptation, the accessory pigment phycoerythrin might not be involved in photosynthesis by sporelings of the intertidal red alga Plumaria elegans (Bonnem) Schm. but is used primarily as a means of protecting the plant from excess green light in the wave-band 500–540 mμ. This work, however, was done with one species only, and concerning the wider question of marine red algae in general, it seemed possible that the role of phycoerythrin might vary with ecological distribution. Thus, plants completely submerged and thereby excluded from most red light would use their accessory pigments for photosynthesis (energizing chlorophyll a indirectly); but plants adapted to long periods of normal daylight would be similar to Plumaria in relying to a much greater extent on chlorophyll a alone for photosynthesis, and use their accessory pigments as protection against inhibitory green light.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 911E-911
Author(s):  
Zhiguo Ju ◽  
Chenglian Liu ◽  
Yongbing Yuan ◽  
Yongzhang Wang ◽  
Gongshi Liu

Crosses between red cultivars produced high frequency of less-colored progeny, while hybridization between non-red cultivars yielded some red-fruited F1 trees. When harvest was delayed and light intensity increased, both green and yellow cultivars accumulated some anthocyanin with higher UDPGal:flavonoid-3-o-glycosyltransferase (UFGalT) activity in colored areas. Overall, anthocyanin accumulation and UFGalT activity were highly correlated (r = 0.8921, P = 0.0001) in fruit from both parental trees and their F1 progeny, but UFGalT activity always was relatively high in fruit peel, whether anthocyanin accumulated or not. There were no significant differences in phenylalanine ammonia-lyase or chalcone synthase activities among the cultivars, and they did not change much after hybridization.


2010 ◽  
Vol 192 (22) ◽  
pp. 5923-5933 ◽  
Author(s):  
Ryan P. Bezy ◽  
David M. Kehoe

ABSTRACT Complementary chromatic acclimation (CCA) allows many cyanobacteria to change the composition of their light-harvesting antennae for maximal absorption of different wavelengths of light. In the freshwater species Fremyella diplosiphon, this process is controlled by the ratio of red to green light and allows the differential regulation of two subsets of genes in the genome. This response to ambient light color is controlled in part by a two-component system that includes a phytochrome class photoreceptor and a response regulator with an OmpR/PhoB class DNA binding domain called RcaC. During growth in red light, RcaC is able to simultaneously activate expression of red light-induced genes and repress expression of green light-induced genes through binding to the L box promoter element. Here we investigate how the L box functions as both an activator and a repressor under the same physiological conditions by analyzing the effects of changing the position, orientation, and sequence of the L box. We demonstrate that changes in the local sequences surrounding the L box affect the strength of its activity and that the activating and repressing functions of the L box are orientation dependent. Also, the spacing between the L box and the transcription start site is critical for it to work as an activator, while its repressing role during light regulation requires additional upstream and downstream DNA sequence elements. The latter result suggests that the repressing function of RcaC requires it to operate in association with multiple additional DNA binding proteins, at least one of which is functioning as an activator.


2019 ◽  
Vol 53 (1) ◽  
pp. 149-170 ◽  
Author(s):  
Luis M. Corrochano

Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.


Jurnal MIPA ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 200
Author(s):  
Tjerie Pangemanan ◽  
Arnold Rondonuwu

Masalah lalu lintas  merupakan salah satu  masalah yang sangat sulit diatasi dengan hanya menggunakan system waktu (timer). Oleh sebab itu diperlukan suatu system pengaturan otomatis yang bersifat real-time sehingga waktu pengaturan lampu lalu lintas dapat disesuaikan dnegan keadaan di lapangan. Penelitian ini bertujuan mengembangkan suatu simulasi sistem yang mampu mengestimasi panjang antrian kendaraan menggunakan metoda pengolahan citra digital hanya dengan menggunakan satu kamera untuk dijadikan parameter masukan  dalam menghitung lama waktu nyala lampu merah dan lampu hijau. Oleh karena itu, sistem lalulintas sangatlah diperlukan, sebagai sarana dan prasarana untuk menjadikan lalulintas lancar, aman, bahkan sebagai media pembelajaran disiplin bagi masyarakat pengguna jalan raya. Penelitian ini penulis menggunakan sistem pengontrolan berbasis citra digital dimana camera sebagai sensor. Untuk aplikasi dari  semua metode dalam penelitian ini digunakan Microcontroller AurdinoTraffic problems is one of the problems that is very difficult to overcome by only using the system time (timer). Therefore we need an automatic real-time adjustment system so that the time settings for traffic lights can be adjusted according to the conditions on the ground. This study aims to develop a system simulation that is able to estimate the length of the vehicle queue using a digital image processing method using only one camera to be used as input parameters in calculating the length of time the red light and green light. Therefore, the traffic system is very necessary, as a means and infrastructure to make traffic smooth, safe, even as a medium for disciplined learning for road users. In this study the authors used a digital image-based control system where the camera as a sensor. For the application of all methods in this study, Aurdino Microcontroller is used


2015 ◽  
Vol 50 (1) ◽  
pp. 55
Author(s):  
Bao Ying ◽  
Guo Changfeng ◽  
Chen Shaohua ◽  
Liu Mei

2021 ◽  
Vol 11 (6) ◽  
pp. 2735
Author(s):  
Ernesto Olvera-Gonzalez ◽  
Martín Montes Rivera ◽  
Nivia Escalante-Garcia ◽  
Eduardo Flores-Gallegos

Artificial lighting is a key factor in Closed Production Plant Systems (CPPS). A significant light-emitting diode (LED) technology attribute is the emission of different wavelengths, called light recipes. Light recipes are typically configured in continuous mode, but can also be configured in pulsed mode to save energy. We propose two nonlinear models, i.e., genetic programing (GP) and feedforward artificial neural networks (FNNs) to predict energy consumption in CPPS. The generated models use the following input variables: intensity, red light component, blue light component, green light component, and white light component; and the following operation modes: continuous and pulsed light including pulsed frequency, and duty cycle as well energy consumption as output. A Spearman's correlation was applied to generate a model with only representative inputs. Two datasets were applied. The first (Test 1), with 5700 samples with similar input ranges, was used to train and evaluate, while the second (Test 2), included 160 total datapoints in different input ranges. The metrics that allowed a quantitative evaluation of the model's performance were MAPE, MSE, MAE, and SEE. Our implemented models achieved an accuracy of 96.1% for the GP model and 98.99% for the FNNs model. The models used in this proposal can be applied or programmed as part of the monitoring system for CPPS which prioritize energy efficiency. The nonlinear models provide a further analysis for energy savings due to the light recipe and operation light mode, i.e., pulsed and continuous on artificial LED lighting systems.


Sign in / Sign up

Export Citation Format

Share Document