Processing and influence on mechanical properties of precision laser beam welding of dissimilar material combination of stainless steel and brass

2002 ◽  
Vol 12 (3) ◽  
pp. 191-200
Author(s):  
Rolf Galun ◽  
Heribert Bordfeld ◽  
Sven Gattermann ◽  
Barry Leslie Mordike
2020 ◽  
Vol 791 ◽  
pp. 139797
Author(s):  
Wenhua Dai ◽  
Sun Wenjun ◽  
Jijun Xin ◽  
Shanlin Wang ◽  
Chao Fang ◽  
...  

2015 ◽  
Vol 651-653 ◽  
pp. 713-718 ◽  
Author(s):  
Marion Merklein ◽  
Raoul Plettke ◽  
Daniel Junker ◽  
Adam Schaub ◽  
Bhrigu Ahuja

The quality of additive manufactured parts however depends pretty much on the workers experience to control porosity, layer linkage and surface roughness. To analyze the robustness of the Laser Beam Melting (LBM) process a Round Robin test was made in which specimens from four institutes from different countries were tested and compared. For the tests each institute built a set of specimens out of stainless steel 1.4540. The aim of this work is to analyze the influence of the process parameters on the mechanical properties. The results show that there is a high potential for additive manufacturing but also a lot of further research is necessary to optimize this technology.


1998 ◽  
Vol 521 ◽  
Author(s):  
J. Burzer ◽  
T. Bernard ◽  
H. W. Bergmann

ABSTRACTThe aim of this work is the evaluation of new construction elements for applications in transportation industry which are based on new designs incorporating commonly applied aluminium structures and aluminium foams. The work includes the characterisation of the joining process, the joining mechanism and the mechanical properties of the joining zone. A testing method for the joints is developed which is based on a common tensile test in order to evaluate the influence of the main laser welding parameters on the toughness of the joints and to afford a comparison between laser beam welding and gluing process. The analysis of the joining mechanism is investigated with the help of metallographic studies. In addition, the energy absorption properties of aluminium hollows filled and joined with foam structures are characterised.


2011 ◽  
Vol 383-390 ◽  
pp. 6225-6230
Author(s):  
K.R. Balasubramanian ◽  
T. Suthakar ◽  
K. Sankaranarayanasamy ◽  
G. Buvanashekaran

Laser beam welding (LBW) is a fusion joining process that uses the energy from a laser beam to melt and subsequently crystallize a metal, resulting in a bond between parts. In this study, finite element method (FEM) is used for predicting the weld bead profile of laser welding butt, lap and T-joints. A three-dimensional finite element model is used to analyze the temperature distribution weld bead shape for different weld configurations produced by the laser welding process. In the model temperature-dependent thermo physical properties of AISI304 stainless steel, effect of latent heat of fusion and convective and radiative boundary conditions are incorporated. The heat input to the FEM model is assumed to be a 3D conical Gaussian heat source. The finite element software SYSWELD is employed to obtain the numerical results. The computed weld bead profiles for butt, lap and T-joints are compared with the experimental profiles and are found to be in agreement.


Sign in / Sign up

Export Citation Format

Share Document