scholarly journals Induced resistance against Fusarium solani root rot disease in cassava plant (Manihot esculenta Crantz) promoted by salicylic acid and Bacillus subtilis

Author(s):  
Chanon Saengchan ◽  
Rungthip Sangpueak ◽  
Toan Le Thanh ◽  
Piyaporn Phansak ◽  
Natthiya Buensanteai
2015 ◽  
Vol 10 (50) ◽  
pp. 4538-4542 ◽  
Author(s):  
Ngobisa A I C Nyaka ◽  
Djidjou P Kammegne ◽  
Ntsefong Godswill Ntsomboh ◽  
M Mbenoun ◽  
Simon Zok ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alemayehu Dugassa ◽  
Tesfaye Alemu ◽  
Yitbarek Woldehawariat

Abstract Background Faba bean (Vicia faba L.) cultivation is highly challenged by faba bean black root rot disease (Fusarium solani) in high lands of Ethiopia. To ensure sustainable production of faba beans, searching for eco-friendly disease management options is necessary to curb the progress of the disease timely. The indigenous biocontrol agents that suit local environments may effectively strive with in-situ microorganisms and suppress local pathogen strains. This study aimed to screen antagonistic indigenous compatible Trichoderma and Pseudomonas strains against Fusarium solani. In the pathogenicity test, soil-filled pots were arranged in complete random block design and sown with health faba bean seeds. The effect of some fungicides was evaluated against Fusarium by food poisoning methods to compare with the biocontrol agents. The antagonistic efficacy of biocontrol agents and their compatibility was investigated on Potato dextrose agar medium. Results Fusarium solani AAUF51 strain caused an intense root rotting in faba bean plant. The effect of Mancozeb 80% WP at 300 ppm was comparable with Trichoderma and Pseudomonas strains against Fusarium. The mycelial growth of test the pathogen was significantly (P ≤ 0.05) reduced to 86.67 and 85.19% by Trichoderma harzianum AAUW1 and Trichoderma viridae AAUC22 strains in dual culture, respectively. The volatile metabolites of Pseudomonas aeruginosa AAUS31 (77.78%) found the most efficient in reducing mycelial growth of Fusarium followed by Pseudomonas fluorescens AAUPF62 (71.11%) strains. The cell-free culture filtrates of Pseudomonas fluorescens AAUPF62 and Pseudomonas aeruginosa AAUS31 were more efficient than the Trichoderma strain in reducing the growth of Fusarium isolates. There was no zone of inhibition recorded between Trichoderma harzianum AAUW1, Trichoderma viridae AAUC22, Pseudomonas aeruginosa AAUS31, and Pseudomonas fluorescens AAUPF62 strains, hence they were mutually compatible. Conclusions The compatible Trichoderma and Pseudomonas strains showed antagonistic potentiality that could be explored for faba bean protection against black root rot disease and might have a future dual application as biocontrol agents.


2012 ◽  
Vol 3 (6) ◽  
pp. 1-3
Author(s):  
Z. A. Badri Z. A. Badri ◽  
◽  
Nazir A Bhat ◽  
F.A. Raina F.A. Raina

3 Biotech ◽  
2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Mahesh R. Ghule ◽  
Purushottam K. Ramteke ◽  
Sahadeo D. Ramteke ◽  
Prasad S. Kodre ◽  
Amruta Langote ◽  
...  

2011 ◽  
Vol 48 (No. 7) ◽  
pp. 312-317
Author(s):  
M. Hashem ◽  
A.M. Hamada

Four compounds namely Fenor (F-760), Strom, salicylic acid (SA) and thiamin (B1) were tested against root rot disease of wheat under field condition. Wheat grains were soaked in these compounds for 6 h before sowing. Mean disease rating, disease appearance, and distribution of disease were estimated as parameters of disease severity. All tested compounds significantly reduced the root rot of wheat severity during seedling, flowering and ripening stages. Fresh and dry weights were also affected by application of these compounds. Water maintenance capacity in all stages was increased as a result of seed treatments by the above-mentioned compounds. Crop yield and parameters of spikes and grains were significantly improved. These results were discussed and analyzed statistically using LSD test.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Mokhtar M. Abdel-Kader ◽  
Nehal S. El-Mougy

Integrated commercial blue-green algae extracts and bioagents treatments against vegetables root rot incidence when used as soil drench under greenhouse and plastic house conditions were evaluated. All applied treatments reduced significantly root rot incidence at both pre- and postemergence growth stages of cucumber, cantaloupe, tomato, and pepper plants compared with untreated check control. In pot experiment, the obtained results showed that treatments ofTrichoderma harzianumorBacillus subtiliseither alone or combined with commercial algae extracts were significantly superior for reducing root rot disease for two tested vegetable plants compared with the other tested treatments as well as control. It is also observed that rising concentrations of either algae products, Oligo-X or Weed-Max, were reflected in more disease reduction. Promising treatments for controlling root rot disease incidence were applied under plastic houses conditions. As for field trails carried out under plastic houses conditions at different locations, the obtained results revealed that the applied combined treatments significantly reduced root rot incidence compared with fungicide and check control treatments. At all locations it was observed that Weed-Max (2 g/L) +Bacillus subtilissignificantly reduced disease incidence of grown vegetables compared with Oligo-X (2 mL/L) +Trichoderma harzianumtreatments. An obvious yield increase in all treatments was significantly higher than in the control. Also, the harvested yield in applied combined treatments at all locations was significantly higher than that in the fungicide and control treatments.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jinshao Li ◽  
Li Cheng

Gastrodia elata, a traditional and important medicinal plant in China, it is used to numerous medical reasons. It is widely planted in Shaxi, Guizhou Province, China. G. elata grown in Guizhou is of high quality and an important source of income for the region. However, a root rot disease has been reported on G. elata in Guizhou in recent years, with an incidence rate of approximately 25%; this disease has markedly affected the plant growth and development. It causes what is referred to as a “rotten nest” and “empty nest”, significantly reducing the yield and medicinal value of G. elata. Eighty diseased G. elata samples were collected from August to December 2020 in Shaxi. Tissue dissection was used to isolate the pathogen on an ultra-clean workbench. In short, thew surface of G. elata was wiped with 75% alcohol for 30 s and then rinsed three to four times with sterile water. After the surface had dried, the skin from an infected area of the plant was cut into a net shape using a sterile scalpel. Eighty diseased tissue samples were placed on PDA (potato dextrose agar) medium using a sterile medical syringe needle and placed in an incubator at 25 °C for 7 days, and 61 fungal isolates with the same morphological characteristics were obtained from the diseased samples. Pure cultures of a putative fungal pathogen designated SX13 were obtained using the single-spore isolation and cultured on PDA medioum for identification and analysis. The colony grew in a circular shape, and the early hyphae were compact and white. A light-yellow ring appeared in the outer circle of the hyphae, and could be seen on both sides of the plate. The upper side of the colony turned white subsequently, and the lower side was light yellow. Identification of SX13 as Fusarium solani was primarily done based on morphological characteristics (Chitrampalam et al., 2018). Colonies produced macroconidia, which were sickle-shaped with two to five septa; most of them had three septa (length by width: 17.28 to 36.23 μm by 4.33 to 6.43 μm). Smaller conidia were fusiform, renal, or oblong, with no or one septum (length by width: 5.56 to 14.35 μm by 2.93 to 5.76 μm). Chlamydospore were also observed with diameters of ranging from 3.43 to 13.12 μm. Identification of SX13 was verified through DNA sequencing. Genomic DNA was extracted using the Biomiga Fungal gDNA Kit. The internal transcribed spacer (ITS) region (primers ITS5/ITS4) (Schoch et al., 2012), β-tubulin (primers T1/T2) (O’Donnell and Cigelnik, 1997), and actin gene (ACT) region (primers ACT-512F/ACT-783R) (Carbone and Kohn, 1999) were PCR amplified, sequenced, and subjected to NCBI BLASTn homology matching analyses (GenBank Accession Nos. MW888340, MW892976 and MZ440809). High levels of sequence homology were observed with a F. solani reference sequence (Accession Nos. MT560378, ITS=100%; KU938955, β-tubulin=100%; KM231197, ACT=99%). To complete Koch's postulates, a conidial suspension (106 spores/mlcollected from isolate SX13 was inoculated onto nine G. elata root samples. Sterile water was used as a negative control, and the pathogenicity assay was repeated three times. Following inoculation, plants were kept under high relative humidity in the dark at 25 °C for 7 days. Symptoms similar to the original outbreak were observed on all inoculated plants. In contrast, the negative control plants were healthy and unaffected. The SX13 was re-isolated successfully from the diseased tissues and verified based on morphology and sequencing as described above. To the best of our knowledge, this is the first report of F. solani causing root rot disease on G. elata in China. These findings provide a basis for further research on the management of this disease.


Sign in / Sign up

Export Citation Format

Share Document