Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration

2020 ◽  
Vol 31 (8) ◽  
pp. 984-998 ◽  
Author(s):  
Wenwei Gao ◽  
Liying Sun ◽  
Zetian Zhang ◽  
Zhengjun Li
Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2014
Author(s):  
Asmaa M. Abd El-Aziz ◽  
Ahmed Abd El-Fattah ◽  
Azza El-Maghraby ◽  
Doaa A. Ghareeb ◽  
Sherif Kandil

Chemical cross-linking was used to create nanocomposite hydrogels made up of gelatin (G) and borosilicate bioactive glass (BBG) with different content (0, 3, and 5 wt.%). The G/BBG nanocomposite hydrogels were studied for their morphology, mechanical properties, and viscoelasticity. SEM images revealed a macroporous interconnected structure with particles scattered across the pore walls. Studies of water absorption and degradation confirmed that the nanocomposite scaffolds were hydrophilic and biodegradable. The addition of 5% BBG to the scaffold formulations increased the compressive modulus by 413% and the compressive intensity by 20%, respectively. At all frequency ranges tested, the storage modulus (G′) was greater than the loss modulus (G″), revealing a self-standing elastic nanocomposite hydrogel. The nanocomposite scaffolds facilitated apatite formation while immersed in simulated body fluid (SBF). According to the findings, G/BBG nanocomposite scaffolds could be a promising biomaterial for bone regeneration.


2021 ◽  
Vol 557 ◽  
pp. 120628
Author(s):  
Silmara C. Santos ◽  
Katharina G. Spaniol ◽  
Nikolas E. Chaves-Silva ◽  
Roberta P.M. Fernandes ◽  
Débora S. Tavares ◽  
...  

2013 ◽  
Vol 5 (9) ◽  
pp. 3847-3854 ◽  
Author(s):  
Chengjun Zhou ◽  
Qingfeng Shi ◽  
Weihong Guo ◽  
Lekeith Terrell ◽  
Ammar T. Qureshi ◽  
...  

2012 ◽  
Vol 6 (4) ◽  
pp. 470-483 ◽  
Author(s):  
Lijun Ji ◽  
Yunfeng Si ◽  
Ailing Li ◽  
Wenjun Wang ◽  
Dong Qiu ◽  
...  

Applied Nano ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 118-127
Author(s):  
Luca Zoia ◽  
Anna Binda ◽  
Laura Cipolla ◽  
Ilaria Rivolta ◽  
Barbara La Ferla

Binary nano-biocomposite 3D scaffolds of cellulose nanocrystals (CNCs)—gelatine were fabricated without using chemical crosslinking additives. Controlled oxidative treatment allowed introducing carboxyl or carbonyl functionalities on the surface of CNCs responsible for the crosslinking of gelatine polymers. The obtained composites were characterized for their physical-chemical properties. Their biocompatibility towards different cell cultures was evaluated through MTT and LDH assays, cellular adhesion and proliferation experiments. Gelatine composites reinforced with carbonyl-modified CNCs showed the most performing swelling/degradation profile and the most promising adhesion and proliferation properties towards cell lines, suggesting their potential application in the field of tissue engineering.


2021 ◽  
Author(s):  
Prescillia Lagarrigue ◽  
Vincent Darcos ◽  
Christophe Tenailleau ◽  
Benjamin Duployer ◽  
Agnès Dupret-Bories ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 630-638
Author(s):  
Fatema Aziz Al-Sayed ◽  
◽  
Radwa Hamed Hegazy ◽  
Zeinab Amin Salem ◽  
Hanan Hassan El-Beheiry ◽  
...  

An ideal biomaterial for bone regeneration is a longstanding quest nowadays. This study aimed to evaluate the osteogenic potentiality of nano-bioactive glass enhanced biocement based silicate with or without hyaluronic acid seeded in rabbits’ tibial bone defects. For this, 24 male rabbits with two 5 mm defects (1 defect per tibia) were divided into three equal groups. Among the predefined three groups, for the rabbits of group 1(control) bone defects were left untreated while for the members of group 2 defects received nano-bioactive glass enhanced biocement based silicate cement, and group 3 defects received nano-bioactive glass cement mixed with hyaluronic acid. Animals of each group were divided equally for euthanization after 3 and 6 weeks. Bone specimens were processed and examined histologically with histomorphometrically analysis of new bone area percentage. The bone defects in group 3 showed significantly improved osseous healing histologically as compared to the group 1&2. The morphometric analysis also revealed a significant increase in the new bone area percentage in group 3 as compared to the group 1 and 2 (P < 0.05). The results of the present study can be concluded that bone defects could be treated with nano-bioactive glass and hyaluronic acid cement. Although, nano-bioactive glass alone was capable of bone regeneration the combination of both had significant regenerative capacity.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
M. Mozafari ◽  
F. Moztarzadeh ◽  
M. Rabiee ◽  
M. Azami ◽  
N. Nezafati ◽  
...  

In this research, macroporous, mechanically competent and bioactive nanocomposite scaffolds have been fabricated from cross-linked gelatine (Gel) and nano bioactive glass (nBG) through layer solvent casting combined with freeze-drying and lamination techniques. This study has developed a new composition to produce a new bioactive nanocomposite which is porous with interconnected microstructure, pore sizes are 200-500 μm, porosity are 72%-86%. Also, we have reported formation of chemical bonds between nBG and Gel for the first time. Finally, the in vitro cytocompatability of the scaffolds was assessed using MTT assay and cell attachment study. Results indicated no sign of toxicity and cells found to be attached to the pore walls offered by the scaffolds. These results suggested that the developed nanocomposite scaffold possess the prerequisites for bone tissue engineering scaffolds and it can be used for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document